
Migrating Java-Based Apo-Games into a
Composition-Based Software Product Line
Jamel Debbiche

Chalmers | University of Gothenburg
Gothenburg, Sweden

Oskar Lignell
Chalmers | University of Gothenburg

Gothenburg, Sweden

Jacob Krüger
Otto-von-Guericke University

Magdeburg, Germany

Thorsten Berger
Chalmers | University of Gothenburg

Gothenburg, Sweden

ABSTRACT
A software product line enables an organization to systematically
reuse software features that allow to derive customized variants
from a common platform, promising reduced development and
maintenance costs. In practice, however, most organizations start
to clone existing systems and only extract a software product line
from such clones when the maintenance and coordination costs in-
crease. Despite the importance of extractive software-product-line
adoption, we still have only limited knowledge on what practices
work best and miss datasets for evaluating automated techniques.
To improve this situation, we performed an extractive adoption
of the Apo-Games, resulting in a systematic analysis of five Java
games and the migration of three games into a composition-based
software product line. In this paper, we report our analysis and
migration process, discuss our lessons learned, and contribute a fea-
ture model as well as the implementation of the extracted software
product line. Overall, the results help to gain a better understand-
ing of problems that can appear during such migrations, indicating
research opportunities and hints for practitioners. Moreover, our
artifacts can serve as dataset to test automated techniques and
developers may improve or extent them in the future.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering; Maintaining software.

KEYWORDS
Software product line, Extraction, Case Study, Feature model, Fea-
tureHouse, Apo-Games
ACM Reference Format:
Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019.
Migrating Java-Based Apo-Games into a Composition-Based Software Prod-
uct Line. In 23rd International Systems and Software Product Line Conference
- Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3336294.3342361

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3342361

1 INTRODUCTION
A software product line allows an organization to implement a fam-
ily of similar software products based on a common platform [1, 9].
In such a platform, developers systematically manage and reuse fea-
tures that implement mandatory and optional functionalities of the
products. Developers can derive a specific product by configuring
(selecting) the features that shall be part of the product, which is
then built in an automated step. Software product lines promise sev-
eral benefits, such as reduced development and maintenance costs,
improved quality, and faster time to market [14, 34]. Still, despite
such benefits, most organizations fear the initially higher invest-
ment to set up a reusable platform [8, 20] and only later extract [15]
one out of a set of existing software variants. In practice, such vari-
ants often emerge from cloning one product and adapting it to the
needs of another customer, referred to as clone-and-own [7, 11, 32].

While the extractive approach of software-product-line adop-
tion is the most common one in practice [6, 12], most techniques
(e.g., feature location) that aim to automatically analyze the cloned
systems face severe limitations [18, 22, 23, 30]. To overcome such
limitations, we need to provide common ground truths that al-
low to evaluate and compare techniques based on real-world ar-
tifacts [22, 33]. As a step in this direction, Krüger et al. [21] have
contributed a challenge case that comprises 20 Java and five An-
droid games that a single developer implemented based on the
clone-and-own approach. They have challenged the research com-
munity to provide additional artifacts (i.e., feature models, feature
locations, code smells, architectures, migrated software product
lines) that can serve as datasets to evaluate automated techniques
for analyzing these games.

In this paper, we report our experiences on tackling the fifth
challenge of migrating game variants into a software product line.
To this end, the first two authors of this paper analyzed five Java
games and migrated three of these (due to time restrictions) into a
composition-based software product line implemented with Fea-
tureHouse [2]. We further documented our activities, results, and
experiences for each step. Our contributions are:

• We describe the applied analysis and migration process that
resulted in the extracted software product line.

• We report the challenges that we experienced during this
process as lessons learned.

• Weprovide a repository1 with all artifacts we created, namely
the feature model and code base for the software product line.

1https://bitbucket.org/Jacob_Krueger/splc2019_featurehouse_apo-games_spl

https://doi.org/10.1145/3336294.3342361
https://doi.org/10.1145/3336294.3342361
https://bitbucket.org/Jacob_Krueger/splc2019_featurehouse_apo-games_spl

SPLC ’19, September 9–13, 2019, Paris, France Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger

Table 1: Selected subject systems for this study. Asterisks (*)
denote games that we analyzed, but did not transform.

Name Year SLOC Game Type

* ApoCheating 2006 3,960 Level-based puzzles
* ApoStarz 2008 6,454 Level-based puzzles

ApoIcarus 2011 5,851 Endless runner
ApoNotSoSimple 2011 7,558 Level-based puzzles
ApoSnake 2012 6,557 Level-based puzzles

For simplicity, the repository comprises a FeatureIDE [26]
project that others can import.

Our results are helpful for researchers and practitioners to better
understand how variants can be migrated into a software product
line. Moreover, researchers can use our implementation as baseline
to evaluate and compare automated techniques or to incorporate
more Apo-Games in the future.

2 METHODOLOGY
As we tackle the fifth challenge defined by Krüger et al. [21], we
migrated cloned variants towards a software product line. Conse-
quently, we also performed parts of other challenges (e.g., feature
modeling) and provide corresponding artifacts (i.e., the feature
model). In this section, we describe our applied methodology, com-
prising the subject systems we selected, our preparation for the
transformation, the feature recovery process, and our actual trans-
formation process. We remark that we did not follow a specific
methodology (e.g., as described by Assunção et al. [3]), but em-
ployed and adapted activities that are regularly mentioned in the
literature. Finally, we summarize this section by describing the
resulting software product line.

2.1 Subject Systems
The Apo-Games comprise a set of 20 Java games that have been
developed with the clone-and-own approach. Of these games, we
selected five as subjects and provide an overview of these five
in Table 1. We remark that we selected games that showed the most
commonalities while playing them, indicating that they would
contribute to a reasonable software product line. As we can see, the
games are from different periods and cover between four to over
seven thousand source lines of code. While four of them are part
of the same sub-domain of games (puzzles), one is a representative
for an endless running game. We included this one game from a
different sub-domain, because we assumed more overlap for the
same type of games, but also aimed to show that we can integrate
rather different games into a software product line.

During our analysis, we faced some problems (cf. Section 3),
due to which we only transformed three of the games. Moreover,
we cleaned the source code to remove dead code with the Eclipse
plug-in UCDetector2 in several variants, reducing the code base by
almost 40% (removing 11,670 out of 30,380 SLOC). Most of the dead
code resulted from the developer creating a clone without removing
unused code afterwards, for example, for enemy entities. Finally,
we translated the German comments in the games into English to
support our program comprehension. This was done using Google
2https://marketplace.eclipse.org/content/unnecessary-code-detector

Translate, however, most of the comments were not helpful as it
was tacit knowledge, such as describing setters and getters.

2.2 Preparation
Before the actual transformation, we analyzed existing tools to iden-
tify whether we could rely on one of them. However, we found that
most existing techniques (e.g., for automatic feature location [30])
depend on specific artifacts (e.g., source code, models, documenta-
tion, git history) or additional tools that must be available to the
developer. A particular problem in this regard is that most tools
were not useful in our case, as they are discontinued, commercial
or provide unsuitable results. For instance, But4Reuse [25] can sug-
gest features and support extractive adoption, but the suggested
features did not align to the domain features we identified in our
top-down analysis. Namely, But4Reuse suggested features, such
as mousebuttonfunction, according to keywords that appear often
in the code, but these keywords do not reveal the actual domain
features. Due to this mismatch, we decided to rely on a manual
transformation, resulting in a feature-wise migration of the games.

While we did not find a technique that we could employ as is
for the Apo-Games, we nonetheless adopted the described strate-
gies for our own process. This let to the adoption of the sandwich
approach [35] for our feature recovery process (cf. Section 2.3).
We used the results, especially the feature mappings, to plan the
transformation and to actually migrate variant features. During
our analysis, we also decided to use FeatureIDE [26], as it sup-
ports various activities and variability mechanisms that we needed.
Moreover, FeatureIDE is a plug-in for Eclipse, which allowed us
to use other plug-ins more easily. For the variability mechanism,
we used a composition-based technique and feature-oriented pro-
gramming [29] in particular, supporting the physical separation of
features [1, 13, 16]. Consequently, we selected FeatureHouse [2],
which is directly supported by FeatureIDE and integrates more
recent Java versions (i.e., compared to AHEAD [5]).

2.3 Feature Recovery
The first step of extracting a software-product line is to detect
features and their dependencies in the legacy systems [4], which
we defined in a feature model [1, 10]. Moreover, we had to also
locate and map features in the source code [18]. To this end, we
decided to employ a manual analysis comprising top-down and
bottom-up strategies, referred to as sandwich approach [35].
Top-Down Analysis. As first step of our top-down analysis, we
played each subject game and identified its visible features. We
listed the features and performed a pairwise comparison between
the games to identify commonalities and variability. In a second
step, we reverse engineered class diagrams for each game, using
the Visual Paradigm3 plug-in for Eclipse. This extraction helped to
understand that, except for ApoCheating, all subject games share
the same architecture.

During the top-down analysis, we identified 33 features through-
out all games (i.e., the ones we could not match to But4Reuse’s
suggestions). However, when we started to investigate the actual
source code to map these features, we found that several techni-
cal features were still missing in our documentation. To address
3https://marketplace.eclipse.org/content/visual-paradigm-eclipse

https://marketplace.eclipse.org/content/unnecessary-code-detector
https://marketplace.eclipse.org/content/visual-paradigm-eclipse

Migrating Java-Based Apo-Games SPLC ’19, September 9–13, 2019, Paris, France

Table 2: Statistics of the extracted software product line com-
pared to the original games. Products refers to the games
that we could execute based on the implemented features.

Feature Model Statistics
Features Concr. Impl. Constraints Products

47 42 23 16 56

Source Code Statistics Legacy Statistics
Classes SLOC SLOC Legacy Reduction

55 13,932 19,966 -30.22%
Concr.: Concrete features; Impl.: Implemented features

this problem, we performed a thorough code review to identify
features that were not apparent from the user interfaces or only
partly implemented.
Bottom-Up Analysis. For our code review, we again employed
a pairwise comparison of the games. To this end, we started on
project level (folder and class names) and continued with the actual
source code. During this analysis, we relied on Code Compare.4
As this tool only flags whether (1) two files have identical names
and contents, (2) vary in content or (3) are completely unique, we
further compared files manually in Eclipse.

Besides identifying 14 more features, our manual analysis also
allowed us to locate and map the source code that belongs to each
feature. We documented the mapping in a separate table, collecting
the methods and classes that contribute to a feature. This table was
also useful to derive information about the features, such as their
tangling and scattering.
Feature Modeling. After our analysis and mapping, we finalized a
feature model that could represent the existing variants and their 47
features.We show an excerpt of the feature model in Figure 1, which
we describe in more detail in Section 2.5. As feature models can
have various identical representations, it was quite challenging to
evaluate what design would be best for our work. For instance, Men-
donça et al. [27] show specifically for the Apo-Games that various
feature models are Pareto-equivalent depending on the objectives
(e.g., representing only the legacy games). We decided to add as
much variability as possible, instead of having a feature model that
can solely represent the legacy games—which seems more reason-
able to facilitate the evolution of a software product line, during
which corresponding configuration options would also be added.

2.4 Transformation
As first step of the actual transformation, we migrated the common
code base of all games into a FeatureIDE project. This common
part was rather small, comprising the main panel and the game
engine. While this base could already be compiled for testing, it
only showed a black window.

We then incrementally added features of the games into the
software product line. A particular problem in this regard was to
ensure the correct behavior of the transformed code, as we needed
at least one complete game for testing.Moreover, we had to carefully
plan which features to implement first, due to their domain and
technical dependencies. We partly addressed the dependencies by
changing different data structures into more flexible and variable

4https://www.devart.com/codecompare/

ones. For instance, we changed most arrays into data structures
of the List collection to ensure that the games were executable
despite missing or disabled features. However, such changes and
the remaining dependencies still challenged testing.

During the transformation, we also added variant-specific fea-
tures that do not contribute to reuse, but only variability. Due to
time restrictions, we finally migrated 23 features, which can be used
to instantiate three of the legacy games (cf. Table 1), and for which
we show their dependencies in Figure 1. Overall, we emphasized
variability over reuse, and thus introduced not only features based
on clones and variations, but actual domain features [23]. As a
result, the software product line allows to configure 56 games.

2.5 The Software Product Line
In Table 2, we provide a brief overview of the software product line
we extracted. As aforementioned, we identified and modeled 47
features with 16 cross tree constraints.We show the 23 implemented
features and their dependencies as a feature model in Figure 1. In
the diagram, we can see that only few abstract features exist for
structuring other features. On the positive side, we have only few
features that are directly connected to a specific game or game type
(e.g., SnakeInteractive). Thus, most of the features we identified and
implemented seem well suited for reuse.

Considering the source code, we implemented 55 classes compris-
ing 13,932 SLOC in our software product line. As the three legacy
games totaled at 19,966 SLOC, we achieved a reduction of roughly
30%. Some of this reduction is the result of our code cleansing in
the beginning. However, this rather shows the positive impact an
extractive adoption can have on code quality. Also, composition-
based variability mechanisms usually result in additional source
code, because new classes are needed to implement feature modules.
So, we argue that our software product line resulted in a reasonable
complexity and size on implementation level.

Finally, our software product line allows to configure 56 games,
not only the three legacy games, showing that a variable platform
can immediately increase the product portfolio. To test the correct
behavior, we configured, generated, and ran all 56 games success-
fully. However, we remark that not all configurations result in a fully
playable game, yet. This is especially true for games that contain
ApoIcarus game-play, as this variant is not completely migrated nor
as configurable as the other two games (ApoNotSoSimple and ApoS-
nake). Due to the changes we employed during the transformation,
a code-level comparison of the original games and the instantiated
variants is not useful, but we were able to play the original games
as variants of the software product line.

3 LESSONS LEARNED
During the transformation of the three games into a software prod-
uct line, we experienced five main challenges.
Abstraction Level of Features. While identifying features with
the sandwich approach, we found that different abstraction levels
can result in varying sets of features. This highlights the importance
of combining such analyses. Moreover, this experience underpins
that we need to decide on the purpose and extent of a feature model
before its actual design, also deciding how to structure features [28].
Despite the mismatch that we experienced with But4Reuse, we also

SPLC ’19, September 9–13, 2019, Paris, France Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger

Legend:

Mandatory

Optional

Alternative

Abstract

Concrete

ApoGames

Menu

WhiteMenu

World

Credits Options

Levels

Components

Objects Player

Interactive

NotSoSimpleInteractive SnakeInteractive IcarusInteractive

NotSoSimpleLevel SnakeLevel

EditorLevelChooser

Grid

NotSoSimpleGrid

Score

Timer

Achievements Sound

SideEditorBottomEditor

Figure 1: Feature model of the software product line showing implemented features only and no cross-tree constraints.

argue that such tools can support the semi-automated identification
of features on the technical level.
Planning of Features. For the migration of a software product
line, limited resources are available. We experienced that careful
planning and extending analysis activities can considerably simplify
the actual transformation of the variants. Most importantly in our
experience was to know what dependencies between features and
to their artifacts exist. This knowledge helped to get an intuition of
the effort that would be necessary during the actual migration.
Updates on the Feature Model.While we implemented features,
we experienced that we identified and added new constraints to
the feature model. However, this was problematic as, at the be-
ginning, many features were not fully functioning, meaning that
many constraints were missing, too. Thus, constant updates to the
feature model and the corresponding source code added effort to
the extraction process.
Complexity of Superimposition. FeatureHouse uses superimpo-
sition to compose various features with the same class and method
names, resulting in a customized variant. While this works prop-
erly and is a concept related to inheritance, it also poses challenges
when the size of a project grows. As different features can have
classes with the same name and physically separate related code,
it became challenging to understand and identify what classes to
change during maintenance and updates [17, 19, 31].
Tracking Evolution.We used a version control system and differ-
ent branches to document our progress. Still, we found it challeng-
ing to understand later on what happened at what point in time,
as feature code was scattered and tangled throughout commits—
which is a good argument to use variation control systems [24]. For
instance, two features may be changed to enable a third one (e.g.,
implementing updates to the feature model) and all changes are
part of one commit.

4 THREATS TO VALIDITY
Internal Validity. The major threat to the results of this work is
the missing interaction with the original developer. Instead, we
relied on code analysis, reading comments, and reverse engineer-
ing architectures. Consequently, while we carefully analyzed and
checked the results, we cannot ensure that we understood all parts
of the Apo-Games perfectly or that another (i.e., the original) devel-
oper would derive the same implementation for a software product

line. Still, as we were able to instantiate and run the original and 53
more games, we argue that our implementation is reasonable and
can serve as a dataset for transformation and analysis techniques
or to incrementally add more games.
External Validity. The subject systems are small compared to
industrial or established open-source systems. However, they are
publicly available and have been truly developed based on the
clone-and-own approach, for which only few real-world subject
systems exist. In addition, games contribute to more and more
software systems, also exhibiting similar development patterns
and characteristics as other software [7]. Thus, we cannot overly
generalize the results, but they still yield important insights into
the extraction of software product lines.

5 CONCLUSION
In this paper, we described a case study during which we migrated
three Java-based Apo-Games into a composition-based software
product line. For this purpose, we conducted a manual analysis and
transformation process, resulting in the following insights:

• Extracting a composition-based software product line is chal-
lenging and time consuming, due to the changes that are
needed to enable composition.

• During code transformations, we highly recommend to en-
sure that the software product line can always be tested to
ensure the correct transformation of features.

• Incrementally adopting new features facilitates the extrac-
tion, as various artifacts (i.e., the feature model) need updates
and must be tested.

Besides our lessons learned, we also provide a public repository
comprising the extracted software product line and feature model.

In future work, we aim to extend the current artifacts and provide
more detailed insights into the migration process. To this end, we
want to replicate the extraction to verify our results and improve the
validity of our insights. Finally, we plan to improve our dataset so
that we can use it as ground-truth to evaluate automated techniques
for extracting software product lines.
Acknowledgments. This work is supported by the ITEA project
REVaMP2 funded byVinnova Sweden (2016-02804), and the Swedish
Research Council Vetenskapsrådet (257822902). We thank Jennifer
Horkoff for valuable comments on this work.

Migrating Java-Based Apo-Games SPLC ’19, September 9–13, 2019, Paris, France

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer.
[2] Sven Apel, Christian Kästner, and Christian Lengauer. 2011. Language-

Independent and Automated Software Composition: The FeatureHouse Experi-
ence. IEEE Transactions on Software Engineering 39, 1 (2011), 63–79.

[3] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. 2017. Reengineering Legacy Applications into
Software Product Lines: A Systematic Mapping. Empirical Software Engineering
22, 6 (2017), 2972–3016.

[4] Wesley K. G. Assunção and Silvia R. Vergilio. 2014. Feature Location for Software
Product Line Migration: A Mapping Study. In International Software Product Line
Conference (SPLC). ACM, 52–59.

[5] Don Batory. 2004. Feature-Oriented Programming and the AHEAD Tool Suite.
In International Conference on Software Engineering (ICSE). IEEE, 702–703.

[6] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In InternationalWorkshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 7:1–7:8.

[7] John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem. In
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
625–634.

[8] Paul C. Clements and Charles W. Krueger. 2002. Point / Counterpoint: Being
Proactive Pays Off / Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002),
28–31.

[9] Paul C. Clements and Linda M. Northrop. 2001. Software Product Lines: Practices
and Patterns. Addison-Wesley.

[10] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variabil-
ity Modeling Approaches. In International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS). ACM, 173–182.

[11] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 25–34.

[12] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the Source
Code of Multiple Software Variants for Reuse Potential. InWorking Conference
on Reverse Engineering (WCRE). IEEE, 303–307.

[13] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2009. A Model of Refac-
toring Physically and Virtually Separated Features. In International Conference
on Generative Programming and Component Engineering (GPCE). ACM, 157–166.

[14] Peter Knauber, Jesus Bermejo, Günter Böckle, Julio C. S. do Prado Leite, Frank J.
van der Linden, Linda M. Northrop, Michael Stark, and David M. Weiss. 2002.
Quantifying Product Line Benefits. In International Workshop on Software Product-
Family Engineering (PFE). Springer, 155–163.

[15] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering (PFE). Springer,
282–293.

[16] Jacob Krüger. 2017. Lost in Source Code: Physically Separating Features in
Legacy Systems. In International Conference on Software Engineering (ICSE). IEEE,
461–462.

[17] Jacob Krüger. 2018. Separation of Concerns: Experiences of the Crowd. In Sym-
posium on Applied Computing (SAC). ACM, 2076–2077.

[18] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Software Engineering
for Variability Intensive Systems. CRC Press, Chapter Features and How to Find
Them: A Survey of Manual Feature Location, 153–172.

[19] Jacob Krüger, Gül Calıklı, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM. Accepted.

[20] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference (SPLC). ACM, 354–
361.

[21] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake,
and Thomas Leich. 2018. Apo-Games - A Case Study for Reverse Engineering
Variability from Cloned Java Variants. In International Systems and Software
Product Line Conference (SPLC). ACM, 251–256.

[22] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239–253.

[23] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software
Product Line Conference (SPLC). ACM, 65–72.

[24] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification
of Variation Control Systems. In International Conference on Generative Program-
ming: Concepts and Experiences (GPCE). ACM, 49–62.

[25] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Bottom-up Adoption of Software Product Lines: A Generic and
Extensible Approach. In International Conference on Software Product Line (SPLC).
ACM, 101–110.

[26] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[27] Willian D. F. Mendonça, Wesley K. G. Assunção, and Lukas Linsbauer. 2018.
Multi-Objective Optimization for Reverse Engineering of Apo-Games Feature
Models. In International Systems and Software Product Line Conference (SPLC).
ACM, 279–283.

[28] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM.
Accepted.

[29] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming (ECOOP). Springer, 419–
443.

[30] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering. Springer, 29–58.

[31] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel. 2012. Comparing
Program Comprehension of Physically and Virtually Separated Concerns. In
International Workshop on Feature-Oriented Software Development (FOSD). ACM,
17–24.

[32] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 151–160.

[33] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Benchmark-
ing the Techniques for the Evolution of Variant-Rich Systems. In International
Systems and Software Product Line Conference (SPLC). ACM. Accepted.

[34] Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer.

[35] Yinxing Xue. 2011. Reengineering Legacy Software Products into Software
Product Line Based on Automatic Variability Analysis. In International Conference
on Software Engineering (ICSE). ACM, 1114–1117.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Subject Systems
	2.2 Preparation
	2.3 Feature Recovery
	2.4 Transformation
	2.5 The Software Product Line

	3 Lessons Learned
	4 Threats to Validity
	5 Conclusion
	References

