
How to Retire and Replace a Software Product Line
Alejandro Cortiñas∗

Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
alejandro.cortinas@udc.es

Jacob Krüger
Eindhoven University of Technology

Eindhoven, The Netherlands
j.kruger@tue.nl

Victor Lamas
Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
victor.lamas@udc.es

Miguel R. Luaces
Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
miguel.luaces@udc.es

Oscar Pedreira
Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
opedreira@udc.es

ABSTRACT
Software product-line engineering provides a framework for an
organization to develop a family of similar, yet customized, soft-
ware systems based on a common platform. This platform allows
the organization to configure a system to changing customer re-
quirements, while also achieving long-term benefits like reduced
development and maintenance costs. Consequently, a product line
is typically used for a long-living family of systems and is contin-
uously evolved. However, at some point even a product line may
be retired and potentially replaced by a successor, for instance, be-
cause of outdated technology that cannot be replaced easily and
thus makes developing a new product line more feasible. Such a
retiring of product lines is mentioned in previous work, but has
not been investigated in detail. In this paper, we tackle this gap by
describing a process for retiring and replacing a product line, which
we defined based on a real-world action-research-like case study.
Via this case study, we describe how our process can be executed
in practice, what decisions must be considered, as well as the pros
and cons we experienced with retiring a product line. We expect
that these contributions will help practitioners retire product lines
more systematically and with fewer problems. We also indicate
open research directions that should be tackled in the future.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Reusability; Abstraction, modeling and modularity; Software archi-
tectures.

∗All authors have contributed equally and the names are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC’23, August 28 – September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3579027.3609004

KEYWORDS
Software product line engineering, domain analysis, requirements
analysis, product line modernization, case study, mobility informa-
tion systems

ACM Reference Format:
Alejandro Cortiñas, Jacob Krüger, Victor Lamas, Miguel R. Luaces, and Oscar
Pedreira. 2023. How to Retire and Replace a Software Product Line. In 27th
ACM International Systems and Software Product Line Conference - Volume A
(SPLC ’23), August 28-September 1, 2023, Tokyo, Japan. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3579027.3609004

1 INTRODUCTION
A software product line (SPL) is a software-engineering concept
that allows for the efficient and systematic reuse of software arti-
facts across multiple related software systems [6, 35, 45]. In other
words, an SPL is a group of systems that are built on a common plat-
form sharing a similar architecture, design, and features, but that
can also be customized to suit particular customer needs. With each
new system variant, developers can reuse the platform’s existing
artifacts, such as source code, specifications, or models, rather than
starting from scratch. For this purpose, the developers engineer
a platform (i.e., domain engineering) by eliciting features for the
SPL [26, 27], establishing a variability model [14, 42], designing the
architecture [20, 43], implementing a variability mechanism [24, 60],
setting up testing infrastructures [18, 21], and using a configura-
tor tool [44, 54]. Through a valid feature configuration, a system
variant of the SPL is customized to user requirements and automat-
ically derived (i.e., application engineering). By building upon the
common platform, developers can ensure that systems within the
SPL share a consistent and standardized development methodology.
Consequently, an SPL promises several benefits by enabling devel-
opers to reuse artifacts for creating systems more efficiently, such as
reduced development and maintenance costs, faster time-to-market,
and improved software quality [28, 33, 50, 57].

SPLs have been used in various domains, including aerospace,
electronic equipment, instruments and components, automotive,
embedded firmware, software tools, or healthcare equipment and
supplies [7, 23, 33, 34, 36, 39, 55, 57]. Typically, an SPL represents a
set of long-living systems, and thus is subject to changes for various
reasons, such as changes in requirements, the platform architecture,
or the technology used. Managing the evolution of SPL artifacts is

https://orcid.org/0000-0002-2555-6342
https://orcid.org/0000-0002-0283-248X
https://orcid.org/0000-0001-8960-1299
https://orcid.org/0000-0003-0549-2000
https://orcid.org/0000-0001-6176-4475
https://doi.org/10.1145/3579027.3609004
https://doi.org/10.1145/3579027.3609004

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Víctor Lamas et al.

more challenging than for traditional systems, due to the variability
and consequent complexity these artifacts exhibit. Various means
have been proposed for managing the evolution of SPL artifacts,
including model-based techniques, catalogs of evolution operators
and patterns, or code versioning [5, 9, 11, 17, 37, 40, 48].

However, at some point in time, the developers or organization
may deem it necessary to deprecate an SPL and to create a new
one. For example, an SPL may become technologically outdated,
decline in quality, may exhibit a too complex architecture, or may no
longer meet the needs of the market. In such cases, it may be more
cost-effective to start fresh with a new SPL that incorporates the
latest technologies and best practices. Unfortunately, while a few
publications mention that legacy SPLs are replaced or retired [10,
22, 39, 53], there have been no detailed studies of this evolution
scenario. As a consequence, we are lacking knowledge regarding
the causes (e.g., outdated technology), decisions (e.g., start from
scratch or what to reuse from the legacy SPL), and consequences
(e.g., problems) that relate to retiring an SPL.

In this paper, we present a process for retiring an SPL and re-
placing it with a new one, which we employed in an industrial case
study. We describe not only the process, but also what decisions
were important, what challenges we experienced, as well as how
to balance retiring and reusing the legacy SPL. Essentially, this
process connects two instances of (domain) engineering an SPL
based on typical processes, such as domain and application engi-
neering [6, 45] or promote-pl [35]. With our action-research-like
case study, we provide an in-depth analysis of a real-world scenario
in which we employed the process, contributing valuable insights
into this specific SPL evolution scenario.

In more detail, we contribute the following:
• We present a process for retiring an SPL, including relevant
decisions and their consequences.

• We report our experiences of executing this process in an
industrial case study of replacing an SPL with a new one.

• We discuss the challenges we experienced and their implica-
tions for practitioners as well as researchers.

Our contributions provide a detailed understanding of how SPLs can
be retired and the associated practical as well as research challenges.
These contributions help practitioners decide whether and how to
retire an SPL, and researchers in understanding this specific process
with its corresponding challenges that require further research.

2 RELATEDWORK
We are concerned with retiring and replacing one SPL with a new
one, which is a highly specific evolution scenario. Following es-
tablished process models for SPL engineering [6, 35, 45], we could
describe this scenario as the end-of-life of one SPL engineering
cycle and the start of a new one. Consequently, this scenario is re-
lated to the extractive SPL adoption strategy [30], in which existing
legacy systems are reused to develop an SPL. However, different
meta-studies on SPL extraction and evolution [31, 35, 37, 40, 46, 52]
highlight that the focus in this area of research is on adopting an
SPL from a set of cloned software systems (i.e., not from an SPL).
The research on SPL evolution focuses on one existing SPL and
its continuous modernization. Similarly, research on scoping and
maturity assessments in the context of SPL adoption [1, 2, 8, 9, 29,

38, 39, 41, 47, 49, 56] is also related to our work, since it focuses on
how to decide whether and to what extent to adopt an SPL.

Despite such extensive research, we are not aware of a study that
describes our specific scenario in detail. In this scenario, an organi-
zation faces very different decisions then in the typical extractive
strategy, for instance, deciding which existing artifacts could be
reused can be more challenging. Specifically, if an SPL is adopted
from cloned systems, this is typically driven by increasing chal-
lenges of maintaining these systems [19, 23, 36, 59]—but it is clear
that these and more similar systems are demanded by the market.
Consequently, it is typically clear that the artifacts of the legacy
systems should be reused, since they are up-to-date, demanded by
customers, and established in the domain.

In contrast, in our scenario, there can be various reasons for retir-
ing an SPL, such as outdated technology, an unfeasible architecture,
or missing market demands. As a consequence, it is much less clear
whether and how which artifacts of the existing SPL may be useful
to reuse or should be developed from scratch, enforcing different
decisions onto organizations and developers. Even though this sce-
nario has been mentioned in some related research, the processes,
decisions, and their implications have not been investigated in de-
tail. Arguably the closest work on this scenario is the case study by
Svahnberg and Mattsson [53], who report on migrating from one
SPL generation to a new one. However, this work is more than 20
years old, describes only the migration planning (i.e., architecture
design), stays on a very abstract level, and reports on moving from
a hardware-centered product line into a full-fledged SPL. As such,
the actual process of moving from one SPL to a new one is unclear
and our work provides much richer details. Other studies report
that legacy SPLs exist that are, or already have been, retired and
replaced by new ones [10, 22, 39]. However, none of these works
focuses on the details of this particular evolution scenario. Overall,
our contributions complement the existing research by providing
insights into a specific evolution scenario that is relevant in practice,
but has not been systematically studied in research.

3 STUDY SETTING AND METHODOLOGY
In the following, we first report the context of our research before
defining our research questions and methodology.

3.1 Context of our Research
New technologies for collecting mobility data of public transporta-
tion allow administrations to better understand mobility patterns,
such as traffic jams or empty rides. Analyzing such vast datasets
is highly advantageous as it facilitates the development of new
services and applications, such as apps that display the real-time lo-
cation of buses or traffic conditions. Additionally, these analyses are
crucial for governments and administrations when planning new
transport infrastructures, and for transportation companies seeking
insights into their customers’ behavior. Furthermore, analyzing this
data provides a better understanding of population distribution
challenges, particularly the phenomena of low-density areas and
depopulation. By combining mobility data with demographic in-
formation (such as population size and characteristics), a variety
of applications can be developed to improve public policies. For

How to Retire and Replace a Software Product Line SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

instance, this information can be used to identify the optimal areas
for establishing new day care centers, schools, or nursing homes.

Analyzing citizens’ mobility patterns is not a new concept. His-
torically, city transportation officials conducted surveys to gather
mobility data, such as asking subway riders which stops they used
and which buses they took before and after entering the subway.
This information was then utilized to generate an origin-destination
matrix, which depicted the number of individuals traveling from
one location to another throughout the city during specific hours
on working and non-working days. The significant change today is
that technology allows to automatically capture travelers’ entrance
into the transportation network via transport cards and ticket read-
ing devices, which simplifies tracing their travel patterns.

Another increasingly important topic in urban mobility man-
agement are low-emission zones. They are becoming a widespread
trend across Europe, as cities seek to reduce air pollution and pro-
mote sustainable transportation. In fact, as of 2022, more than 300
cities in Europe have implemented some form of low-emission zone,
according to the CLARS (Charging, Low emission zones, other Ac-
cess Regulation Schemes) website.1 As an example, a law requiring
the creation and implementation of a mobility plan that includes
the management of low-emission zones has been adopted in Spain
and applies to cities with a population over 50,000 inhabitants (ap-
proximately 150 cities). The trend is undeniable: More and more
cities in Europe are realizing the necessity to combat air pollution
and advance sustainable mobility, even though the specifics of low-
emission zones vary depending on the city and country. Given that
the European Union is establishing increasingly ambitious goals
for decreasing emissions and encouraging sustainable mobility, this
tendency will likely only get stronger over the next years.

Given the increasing importance of mobility data analysis, we
believe that it is highly relevant to develop an SPL for a product
family of mobility information systems. Thus, we (i.e., the authors
from Universidade da Coruña) submitted and received funding
for a project proposal to the Spanish National Research Agency
aimed at developing a platform called PLAGEMIS (PLAtform for the
GEneration of Mobility Information Systems) that will automate the
generation of Mobility Information Systems (MISs) using variability
management techniques, such as SPLs, domain specific languages,
and architecture scaffolding. In addition, our research group in
Spain has a spin-off company and we believe that the SPL has a
great potential to be transferred to more industry partners.

During a previous industry-research collaboration [4, 12, 13, 15],
we explored the development of Geographic Information Systems
(GISs) using SPLs. GISs are characterized by their ability to manage
geospatial entities, which has an impact on all levels of software,
including the database (which must support geospatial data types
and operations) and the user interface (which always displays infor-
mation in maps consisting of layers). In addition to these general
functionalities, GISs provide specific features like route calculation
and data processing based on spatial representation. Public admin-
istrations and private companies frequently use GISs to manage
infrastructures (e.g., transportation or supply networks) or mobility
scenarios (e.g., logistics or mobile workforces). Organizations like

1https://urbanaccessregulations.eu/

the International Organization for Standardization (ISO)2 or Open
Geospatial Consortium (OGC)3 have standardized a GIS software
architecture and its components, resulting in most GISs having
the same software architecture and sharing tools, libraries, as well
as software components in their development, regardless of their
concrete application domain. Consequently, many functionalities
are shared among GISs in different domains. This was the motiva-
tion to explore the application of an SPL to GISs: our final GIS SPL
comprises the features that may appear in any GIS and allows a
software engineer to select which of them must be included in a
specific product variant.

In our spin-off company, we have the same vision for PLAGEMIS
and, in fact, the new MIS SPL shall replace the GIS SPL. Conse-
quently, we can build on our previous experiences with developing
the MIS SPL, but we also needed to decide what parts of the old
SPL we had to retire or could reuse. Within this paper, we report
our experiences regarding such decisions.

3.2 Methodology
While the GIS SPL includes some of the functionalities required for
the new MIS SPL, we believe that some of its parts are outdated in
terms of technology, that it includes irrelevant functionality, and
that creating a new SPL would require less effort than adapting
the existing one. After a literature review, we did not find detailed
studies of the scenario where an SPL is deprecated and a new one is
created from its assets. Consequently, we decided to investigate this
scenario inmore detail. To select a researchmethod, we followed the
guidelines byWohlin and Runeson [58]. Given that the main goal of
our research was replacing an SPL, and that applying a technology
transfer model does not seem feasible to obtain reliable scientific
insights, we decided to follow an action-research-like methodology
as described by Staron [51]. We split our group of authors into two
to apply the action research method. The first three authors took
the position of researchers, because they are more involved with the
funded research project and/or have a more objective perspective
on the research questions. In contrast, the last two authors took the
role of the industry stakeholders, since they are closely connected
to the spin-off company, and thus the industrial perspective. This
division gave us the chance to learn from both points of view and
make sure the methodology we came up with was useful to both,
researchers and practitioners. We display an overview of the action-
research methodology in Figure 1, according to which we structure
the remainder of this paper.

During the first diagnosis step of the action-research methodol-
ogy, we analyzed the current state of our GIS SPL and its feasibility
for the new MIS SPL. This step letd us to the conclusion that the
SPL may not be appropriate for the project and has to be deprecated.
However, we were unable to identify a technique that specifically
deals with deprecating an existing SPL and building on its assets to
construct a new one. We believe that it is important to provide a
systematic process for this task and to define criteria for determin-
ing whether to reuse legacy SPL artifacts. Therefore, the research
questions (RQs) that we aimed to answer are:
RQ1 How can we retire an SPL and replace it with a new one?

2https://iso.org
3https://www.ogc.org

https://urbanaccessregulations.eu/
https://iso.org
https://www.ogc.org

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Víctor Lamas et al.

I1. Organization and
product performance

improvement
I2. "Industry as a lab"

Inputs

Action Research
Project

O1. Product, process,
organization, ways-of-

working, method

O2. Knowledge, learning,
theory

Outputs

1.
Diagnosing

2. Action
Planning

3. Action
taking

4.
Evaluation

5.
Learning

Academia Industry Collaboration

Figure 1: Overview of the action research methodology ac-
cording to Wohlin and Runeson [58].

RQ2 What are the challenges of retiring and replacing an SPL?
RQ3 How can we decide whether to reuse legacy SPL artifacts?
By answering these research questions, we hope to contribute novel
insights that can help other practitioners in similar cases, and guide
researchers towards new directions.

Our action research methodology involved four major iterations
(cf. Figure 1). During the first iteration, our planned actions aimed
to analyze the requirements and specifications of the new MIS SPL.
This analysis helped us develop a clear understanding of what the
new SPL needed to be and to set clear goals for the rest of the
project. During the second iteration, we focused on analyzing the
existing GIS SPL to determine whether it could be reused for the
new project or whether it needed to be deprecated. As a result of
this analysis, we determined that the existing SPL was not suitable
for the new project and needed to be deprecated. In the third it-
eration, our actions were oriented towards merging the assets of
the existing with those of the new SPL. Finally, during the fourth
and final iteration, our actions were targeted at defining a method-
ology for deprecating the existing SPL and creating the new one
based on its assets. We conducted collaborative meetings at the
conclusion of each iteration to assess the outcomes and consolidate

Table 1: Initial ISO 14813-1 features we selected.

ISO Service Domain Included Features in Model

Domain A: Traveller information Partially 37
Domain B: Traffic Management
and Operations Partially 10

Domain C: Vehicle Services No
Domain D: Freight Transport No
Domain E: Public Transport Partially 15
Domain F: Emergency Service No
Domain G: Transport related payment No
Domain H: Road transport relate
personal safety No

Domain I: Weather and environmental
conditions monitoring Partially 3

Domain J: Disaster response
management and coordination No

Domain K: National security No
Domain L: ITS data management No
Domain M: Performance management No

the lessons learned. Specifically, we formalized the findings of our
investigation during these discussions and pinpointed areas in need
of improvement. We recorded our results to ensure that we could
answer our research questions and contribute reliable insights for
others to build upon.

4 CONDUCT
In this section, we describe how we applied the action-research
methodology that we defined in Section 3.1. We first describe our
SPL definition process in Section 4.1. Then, we present our process
of reviewing the existing SPL architecture in Section 4.2. After that,
we describe our process of implementing the new SPL in Section 4.3.
Finally, we describe the methodology that we have defined from
the lessons learned in Section 4.4.

4.1 First Iteration: Definition of the SPL
During the first iteration of the action research, our focus was on
analyzing the requirements and specifications for the new SPL. As
we describe in Section 3.1, our research group has been granted
funding by the Spanish National Research Agency to develop a
platform called PLAGEMIS to automate the generation of MISs
using an SPL. To carry out the domain analysis of the PLAGEMIS
SPL, we extracted and recorded all requirements necessary to meet
the project objectives from the project proposal of PLAGEMIS.

Once we elicited the set of requirements for the SPL, we analyzed
reference architectures to identify the essential abstractions and no-
tions that will serve as the foundation of the new SPL. PLAGEMIS
aims to integrate the features of MISs, which are a subset of Intel-
ligent Transport Systems (ITSs). ITSs are a wide-ranging concept
that encompasses various technologies designed to enhance the ef-
fectiveness, reliability, and sustainability of transportation systems.
Such systems have garnered considerable attention in academic
literature and are described in a set of ISO standards, including ISO
14813-1 [25]. This standard focuses on the functional architecture
of ITSs and provides guidelines for designing and deploying ITSs.
It follows a top-down methodology to create a hierarchy of service

How to Retire and Replace a Software Product Line SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

Table 2: Overview of the feature model evolution.

ISO Feature Model Dashboard Refined Experts Refined

Additions 65 Additions 24 Additions 6
Deletions 31
Changes 27

domains, service groups, and services to be used as the input for
ITS architectures. After undertaking a thorough analysis of the
ISO 14813-1 standard, we selected a subset of services that must be
included in the PLAGEMIS SPL. Among the services we selected
were real-time traffic updates, car tracking, and interaction with
public transportation networks. We constructed a feature model
for our new SPL using the descriptions provided by ISO 14813-1
for each of these services. In Table 1 we summarize the result of
this process, enumerating for each ISO service domain whether we
included it in the architecture, and the number of features in the
feature model related to that service domain.

After developing the initial version of the PLAGEMIS feature
model, the next step we made was analyzing existing products.
We followed a systematic methodology that involved conducting a
search of publicly accessible dashboards for mobility management
and evaluating the functionality provided to determine whether
it was included in the feature model. If the functionality was not
already included in the feature model, we evaluated its relevance
for PLAGEMIS to determine whether it should be considered for
inclusion. To document our process, we created a table (published
in an online appendix4) that lists each dashboard and its features,
as well as the features that were not included in our feature model.
We used the table to refine the feature model that we had developed
based on the ISO 14813-1 standard.

During this step, we found several features (e.g., accessibili-
ty/walkability and speeding ticket functionality) that were not
explicitly covered by ISO 14813-1, but we deemed them essential
for PLAGEMIS. Therefore, we added these features to our feature
model. Moreover, we discovered certain aspects of the ISO 14813
standard that we had initially considered essential for our SPL.
However, upon further examination, we concluded that they were
irrelevant. Examples of such aspects include demand management,
corridor management, and alternative route planning. Accordingly,
we decided to exclude these features from our feature model to
avoid unnecessary complexity. Finally, we identified certain fea-
tures listed in the ISO 14813-1 standard that we initially overlooked
but later deemed relevant for PLAGEMIS (e.g., weight-in-motion,
signal monitoring, and transportation cost) and included them in
our feature model. We summarize the modifications, deletions, and
additions we made to the feature model in the column Dashboard
Refined of Table 2.

After refining the feature model based on the extracted dash-
board features, we recognized the importance of obtaining feedback
from domain experts to validate the model’s completeness and ac-
curacy. Thus, we organized a meeting with three researchers from
our group to present the updated feature model and receive their
feedback. The specialists thoroughly reviewed and scrutinized the
4https://zenodo.org/record/8107141

feature model to ensure that it includes all the critical features
required for developing effective mobility solutions. The experts
pointed out to us, among other things, that the dashboards we chose
for the study consider mobility aspects for urban areas only, and
that they believed that it would be essential to include features for
mobility in rural environments. Some of these considerations were:
information on scenic drives and country roads, information on
observing wildlife, as well as information on hiking and camping
sites. Their insightful feedback and suggestions helped us detect
gaps and deficiencies in our feature model, and we improved it fur-
ther based on their comments. Finally, we developed a final version
of the feature model that includes all the necessary features for
mobility systems, which was validated by the experts to confirm
that it meets all the necessary requirements and guidelines for effi-
cient and successful mobility systems. The validated feature model
served as the basis for our new SPL.

4.2 Second Iteration: Review of the GIS SPL
In the second iteration of our action research methodology, we
focused on analyzing the existing GIS SPL to determine whether
it could be reused for the new project or whether it needed to be
deprecated. After a thorough evaluation, we concluded that it was
necessary to discontinue the existing SPL, due to its outdated fron-
tend technology. The existing SPL uses Leaflet, which renders maps
using SVG and HTML DOM, but this technology has been found to
be inefficient compared to the newer and faster WebGL technology.
Additionally, the frontend is implemented using Vue.js 2, whereas
the most recent version of Vue.js offers enhanced performance and
a more satisfying user experience for users. We also compared the
PLAGEMIS SPL architecture to the existing GIS SPL architecture,
and we found that the existing SPL is a subset of PLAGEMIS. This
is because, although the scope of PLAGEMIS are larger MISs, it
must include a web-based geographic information system, which is
precisely the scope of the existing GIS SPL. So, we learned that the
existing SPL is somewhat outdated and subsumed by the new SPL,
leading to the decision that it would be better to design a new SPL
architecture rather than trying to fit new features to the legacy SPL.

To prepare the retirement process, we decided to analyze the
level of coherence between the annotated code and the feature
model. We were looking for two scenarios in which the annotated
code and feature model could be out of sync: features described in
the SPL, but never implemented in the annotated code (i.e., dangling
features); and features implemented in the code, but never added to
the feature model (i.e., orphaned code). In addition, we also looked
for features defined in the SPL that were never utilized in any SPL-
generated product specification (i.e., unused features). In Table 3,
we summarize the outcomes of this analysis.

Regarding dangling features, we conducted an extensive search
of the codebase to determine whether each feature still existed
in the code. We identified a total of 18 dangling features in our
analysis. An example for such a feature is the Google Maps API
support. Unfortunately, Google monetized the API before we could
implement this feature, so it was never completely implemented.
Another example of a dangling feature that we discovered is the
support of multiple Database Management Systems (DBMSs) that
was originally planned. However, as the SPL evolved, we found

https://zenodo.org/record/8107141

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Víctor Lamas et al.

Table 3: SPL feature model and products review.

Review Stage Features

Total Features 117
Dangling features 18
Orphaned code 0
Unused features 14
Overlapping 4

Decision Eliminate 4
Persist 0

that Postgres/PostGIS was sufficient for the product requirements.
Therefore, although the feature remains in the feature model, no
annotated code references it. We also checked for orphaned code,
but found no features in the annotated code that was not defined in
the feature model. This was not surprising to us, since the evolution
process that we applied prioritizes consistency between the added
functionalities and the feature model. To identify unused features,
we revised 31 product specifications and compared them to the
SPL feature model to determine which features were never used in
any product. This provided us with an indication regarding which
features could be deprecated due to their lack of usage in previous
years (e.g., the aforementioned Google Maps API, storing informa-
tion in DBMSs other than Postgres/PostGIS, using a map server
different than GeoServer, or functionality to geolocate documents
and CSV files). Finally, we compared the features identified in the
previous steps to identify overlaps, which were strong candidates
for elimination due to their absence from the annotated code and
product requirements.

Following this in-depth review and evaluation, we decided to
discontinue the current SPL (i.e., learning after the second itera-
tion). However, we also determined that it would be useful to inte-
grate the feature model of the retired SPL into the feature model of
PLAGEMIS. Additionally, we envisioned that at least some of the
old backend components could be reused in the new SPL.

4.3 Iteration 3: Implementation of the new SPL
During the third iteration, we focused on implementing the new
SPL by re-engineering some assets of the existing SPL with those
of the new one. The implementation process began with a clear
understanding of the architecture of the new SPL, the revised ar-
chitecture of the existing one, and a list of products that needed to
be migrated to the new SPL. We identified two challenges during
the diagnosis step. First, merging the feature models and assets of
the existing and new SPLs was cumbersome. Second, migrating the
existing products to the new SPL posed problems.

Regarding the integration of the architectures, we conducted a
thorough comparison of the feature models and the architectures.
During this process, we kept a record of the operations we per-
formed on the feature model of the existing SPL. In Table 4, we
enumerate the operations that we required. For each operation,
we provide a short description and an example of the transfor-
mation applied to the feature model. In Table 5, we describe, for
each operation, the implications on the products, the SPL code,
and the possibility of performing the operation automatically or

semi-automatically when the existing products are migrated. We
used these tables as a reference during the implementation.

After completing the task of integrating the architectures, the
next step was the migration of existing products. This task involved
adapting the existing products to work within the new SPL using
the operations defined previously. For each existing product, we
performed the migration of the product configuration, generated
a new version of the product with the new SPL, and verified that
there were no errors in the product.

In Table 6, we provide insights into the steps we took during the
implementation of the new SPL. The first row shows the number of
features defined in the new SPL after the first iteration. The second
row represents the total number of features in the existing SPL
before any transformation. The third row shows the number of op-
erations required to integrate the feature models of the existing and
new SPLs. The fourth row displays the number of features present
in the final feature model after we performed all transformations.
We observed that not all of the defined operations were required,
and we did not have to apply manual changes to the product specifi-
cations or the annotated code. This wasmainly because any features
that we removed from the previous SPL were not included in the
product specifications or referenced in the annotated code.

4.4 Iteration 4: Definition of the Methodology
During our last iteration, we aimed to formalize the steps that
we carried out previously to create a methodology that can be
more easily replicated for future projects. We display the final
methodology in Figure 2, outlining the steps for reusing and retiring
the architecture of an SPL. Next, we describe each of the steps.

(1) Definition of the new SPL. Our methodology begins with
gathering the requirements for the new SPL. These require-
ments serve as input for defining the SPL and guiding the
subsequent steps. This definition task consists of three steps
that are performed in parallel and iteratively. The first step
involves analyzing existing products, the second step is ana-
lyzing the reference architecture, and the third step involves
consulting domain experts and stakeholders to gather knowl-
edge about the domain. Iterations are performed to refine
the SPL architecture based on the outputs of each step. The
goal is to match the SPL requirements with the features from
existing products, with components and functionality from
the reference architecture, and with the knowledge of ex-
perts; as well as to identify any gaps or conflicts between
the new SPL architecture and the requirements. The output
of the task is the architecture of the new SPL and a prior-
itization of the features based on their importance to the
product family. Not surprisingly, this step is highly similar
to typical domain analyses in SPL scoping methods or steps
in established process models [6, 35, 45, 57]. In more detail,
the three steps in this task are:

(a) Analyze Existing Products. This step involves analyzing
the existing products in the new SPL domain to identify
commonalities and variabilities among them. To compre-
hend the functionality, performance, and design of each
product, this also involves reviewing product specifica-
tions and other pertinent artifacts. The goal is to identify

How to Retire and Replace a Software Product Line SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

Table 4: Operations we used for transforming the feature model.

Operation Description FM Before FM After

Create(A,B) Creates a new feature A as a child of
feature B.

Rename(A, A’) Changes the name of feature A to A’.

Move(B, C) Changes the parent of feature B to C.

Split(A, [A1,A2]) Substitutes feature A by two features
A1 and A2.

Fuse([A1,A2], A) Combine the features A1 and A2 into a
new feature A.

Delete(A) Removes feature A from the feature
model.

SetChildrenRelation(Root, or)
Sets the relationship of feature Root to
its children to be of type or (the second
argument could also be xor or none).

SetProperty(A, mandatory, true)

Sets the mandatory property of A to be
true. The second argument could also
be abstract, and the third one could also
be false.

which traits and advantages are shared by all products and
which are specific to each product. Using this information,
we can define the scope of the new SPL.

(b) Analyze Reference Architectures. This step requires
analyzing the reference architectures that will be used as
a basis for the new SPL to understand its key abstractions
and concepts. To accomplish this, it is necessary to iden-
tify the design concepts and patterns used in the reference
architectures by looking through the source code, architec-
ture documentation, and other available data. Identifying
which elements and resources from the reference design
can be used in the new SPL and which ones need to be
modified or replaced is the primary objective.

(c) Consider Experts Knowledge. This step comprises elic-
iting the knowledge and expertise of domain experts, soft-
ware architects, and other stakeholders who can provide
valuable insights into the design and implementation of

the new SPL. Their input can help identify the most im-
portant features and assets to include in the new SPL, as
well as potential challenges and risks.

(2) Feature and Asset Review of Existing SPL Architecture.
This task involves a two-fold task to review and analyze
the existing SPL architecture. First, we must identify which
features and assets of the existing SPL architecture are still
relevant and can be reused in the new SPL, and which ones
need to be retired because they are obsolete or not relevant.
Second, we must analyze the coherence between the anno-
tated code and the feature model. This involves identifying
discrepancies between the annotated code and feature model,
including dangling features, orphaned code, and unused fea-
tures. The output of this task is a report detailing the reusable
and obsolete features and assets in the existing SPL archi-
tecture, and a summary table of the discrepancies between
annotated code and feature model that represent candidates
for retirement.

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Víctor Lamas et al.

Table 5: Impact of each feature-model transformation operation.

Operation Product Configuration Annotated Code Automation Level

Create No changes. No changes. Automatic.
Rename Update to use the new feature name. Updated to use the new feature

name.
Automatic.

Move The product configurations must
only be changed in specific cases
(e.g., when the parent-children rela-
tion of the new parent is XOR and
there is already a child selected in
the configuration).

No changes. Semi-automatic. The change in the
product configuration must be done
manually.

Split Update the existing product config-
urations to use the new features and
remove the original feature.

Update the annotated code and
change the feature for the new fea-
tures.

Automatic.

Fuse Update the existing product config-
urations to use the new feature and
remove the original features.

Update the annotated code and
change the original features to the
fused feature.

Semi-automatic. The product con-
figurations can be changed automat-
ically. The annotated codemay have
to be reviewed because it may have
inconsistencies (e.g., if two exclu-
sive and incompatible features are
fused together, the resulting code
may not be correct).

Delete Remove the feature from the exist-
ing product configurations.

Remove the code that is annotated
with the feature.

Automatic.

SetChildrenRelation Depending on the change, the prod-
uct configuration must be changed
manually (e.g., a relationship that
changes to xor may require that
some features are removed to leave
only one child selected).

The annotated code does not
change.

Semi-automatic. Depending on the
change, the modifications to the
product configuration have to be
done manually.

SetProperty If the mandatory property changes
to true, and the feature is not already
included in the feature model, it
must be included. In all other cases,
the product configuration does not
change.

The annotated code only changes
if the abstract property changes to
true because any annotated code
with that feature should be removed
or moved outside of the annotation.
In the other cases, the annotated
code does not change.

Semi-automatic. The mentioned
caseswill probably require amanual
review of the product configuration
and the annotated code.

Table 6: Number of features through all transformations.

Transformation Phases

Features in the new SPL 83
Features in the existing SPL 117

Transformation operations

Create 83
Delete 4
SetProperty 8
SetChildrenRelation 12

PLAGEMIS SPL features 200
Product configurations migrated 30
Manual changes 0

(3) New SPL Implementation. The final task involves inte-
grating the new architecture with the existing one, detecting
overlaps and conflicts, reconciling them, and adapting the
assets of the existing SPL architecture to fit into the new
architecture. Additionally, the task includes adapting the
product configurations for the products of the old SPL to fit
into the new feature model of the new SPL architecture. This
task requires identifying which configurations need to be
updated and modified and validating the migrated products.
Specifically, the two steps of this task are to:

(a) Integrate Architectures. This step comprises integrating
the new SPL architecture with the existing SPL architec-
ture to create the final SPL architecture. At this point, we

How to Retire and Replace a Software Product Line SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

(1) SPL Definition

(3) SPL Implementation

SPL
Architecture

(a) Integrate
Architectures

(b) Migrate
Products

Revised SPL
Architecture

New SPL
Architecture

Products to be
Migrated

Product Family
Requirements

(c) Consider
Experts

Knowledge

(2) Feature and
asset review

(b) Analyze
Reference

Architectures

(a) Analyze
Existing
Products

Figure 2: Our proposed methodology for retiring and replac-
ing an SPL.

need to detect overlaps and conflicts between the architec-
tures and reconciling them. The feature model should be
reviewed to ensure that all the commonalities and variabil-
ities of the products are captured and represented accu-
rately. The assets of the existing SPL architecture should
be refactored and adapted to fit into the new architecture,
and any new assets required by the reference architecture
should be developed.

(b) Migrate Products. In this step, we migrate the products
from the existing SPL to the new SPL by adapting their
configurations to the new architecture. This entails de-
termining which product configurations require updating
and adjusting them to conform to the new feature model.
The products should be verified after the migration to en-
sure they still meet their functional and non-functional
requirements. Such a validation should be done for any
relevant aspect of the products, including usability, per-
formance, and functionality.

Overall, this process provides a guideline for organizations to retire
and replace one SPL with a new one.

5 DISCUSSION AND LEARNING
In this section, we first answer and discuss our research questions.
Furthermore, we summarize our current experiences with writing
the GIS SPL and replacing it with the PLAGEMIS SPL.

5.1 Answering the Research Questions
To answer RQ1, how to retire an SPL and replace it with a new one,
we have developed a comprehensive methodology that outlines the
critical steps and considerations required for a successful transition
(cf. Figure 2). Our methodology focuses on analyzing the existing
SPL, identifying its strengths and limitations, and determining the
need for a new SPL based on the identified gaps. Additionally, we
outline the process for selecting a new domain and architecture, as
well as integrating the assets of the existing and new SPLs. Through
our methodology, we provide a structured way for managing the
retirement of an SPL and creating a new one, ensuring that the tran-
sition is efficient and effective. This methodology can guide other
practitioners in this scenario, and it highlights how researchers can
support them doing so.

To answer RQ2, what are the challenges of retiring and replac-
ing an SPL, we experienced several issues that must be addressed
to ensure a smooth and successful migration. Migrating existing
products to the new SPL, while ensuring they continue to function
is arguably the biggest challenge. When dealing with numerous
products, each with unique features and specifications, this can
become especially complicated. Additionally, altering the feature
model can have significant unintended consequences that necessi-
tate modifying the annotated code—which is not always a simple
task. It is particularly problematic to perform the migration process
if it must be completed without affecting the functionality of the
current products. In this paper, we have presented our methodology
with a set of transformation operations and their implications on
the product configurations and annotated code. These operators
can help address the challenges of retiring and replacing an SPL,
facilitating a successful transition.

To answer RQ3, how to decide whether to reuse legacy SPL
artifacts, we determined this through thorough analyses of vari-
ous factors. The most important method to do so is to assess the
technology used in the SPL and to determine whether it is still ben-
eficial and pertinent. By collecting and examining relevant metrics
(e.g., the frequency with which a feature is used in the products,
the impact of removing a feature on product quality, the costs of
maintaining a feature), we were able to determine the significance
of each feature in the products developed and maintained by the
company. While we provided some hints on how to make such
decisions, we feel that more studies are needed to provide con-
crete guidance on what trade-offs between reusing a feature or
implementing it anew practitioners must consider.

5.2 Lessons Learned
During our case study, we obtained particularly two further insights,
which we detail in the following.

Annotation-Based Variability Mechanisms Facilitate Anal-
yses. One benefit we experienced with our annotation-based im-
plementations of the SPLs is that it is simpler to perform design
operations and convert features between models. When the code is
annotated and referred to in a feature model, maintaining a precise
connection between the two is easier during transformations. We
have to take into account that composition-based SPLs may profit
differently, since they demand a more complicated but also a direct

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Víctor Lamas et al.

mapping between a feature and its implementation. From our ex-
perience and similar findings in other studies [3, 16, 32], we argue
that composition-based implementation techniques may make it
more challenging to preserve a clear and consistent connection
between code and feature models during the transformations and
re-engineering we employed. As a result, it may be necessary in
some circumstances to use a variety of strategies to achieve the
desired outcomes.

Formalizing Transformations in the Process is Key. In our
process for retiring an SPL and creating a new one, we have taken
great care to formalize the transformations required to move from
one feature model to another. By formalizing the transformations
required to move from one feature model to another, we have
established a clear and repeatable process for transitioning between
SPLs. This is a significant benefit of our process, because it allows
to undo all executed steps if necessary. During our case study, we
experienced that it can be immensely helpful to return to a previous
state, for instance, to fix errors more easily or revisit previous states
for inspection. Additionally, while it is possible to specify additional
operations, our set of operations for feature model transformation
was sufficient for transforming our specific feature model.

6 CONCLUSION
In this paper, we outlined a process for retiring an existing SPL
and replacing it with a new one. Through a case study, we identi-
fied and described the choices involved in this process and their
effects. We decided to further explore this scenario using an action-
research-like methodology, since there were no in-depth studies
on this SPL evolution scenario in the literature. Via four iterations
of our methodology, each centered on a distinct set of actions, we
derived our process. In the first iteration, we examined require-
ments and specifications for the new SPL. In the second iteration,
we determined whether the existing SPL could be reused. In the
third iteration, we combined assets of both SPLs. In the fourth and
final iteration, we defined our process for deprecating the exist-
ing SPL and developing a new one based on its assets, taking into
account our previous experiences. The process we developed is
aimed at providing a systematic way for deprecating and replacing
an existing SPL, and for determining whether to reuse legacy SPL
artifacts. For both practitioners and researchers in this field, our
experiences offer perspectives and experiences from an industrial
case study. We also describe the difficulties we experienced and
how these may impact future studies and applications. Overall, we
think that the results of our study are a helpful manual for software
development teams dealing with similar circumstances.

Based on our current research, we think that additional analyses
of the procedures and processes involved in integrating architec-
tures and migrating products is necessary. It would be beneficial
to conduct more case studies using our process as part of future
work. So, we can improve our process and learn more about how it
functions in various contexts by looking at more cases. In addition,
we would be able to pinpoint problems that can impact everyone in
the software engineering community as well as possible solutions.
We also want to investigate the creation of automated tools for
the migration and integration processes. Another significant fu-
ture work would be to propose specific metrics for selecting which

SPL assets to retire. Although we provided some criteria for this
decision-making process, it could benefit from more extensive and
quantitative metrics. For instance, metrics that take into account
the legacy assets’ frequency of use, maintainability, and compati-
bility may be helpful in deciding whether to retire or reuse them.
Further research into how retiring particular assets can impact the
overall quality of the new (or an existing) SPL may reveal which
assets are most essential to the success of a system.

ACKNOWLEDGMENTS
PID2021-122554OB-C33 (OASSIS): partially funded by MCIN/AEI/-
10.13039/501100011033 and EU/ERDF A way of making Europe;
TED2021-129245B-C21 (PLAGEMIS): partially funded byMCIN/AEI/-
10.13039/501100011033 and “NextGenerationEU”/PRTR; PDC2021-
121239-C31 (FLATCITY-POC): partially funded byMCIN/AEI/10.130-
39/501100011033 and “NextGenerationEU”/PRTR; PID2020-114635R-
B-I00 (EXTRACompact): partially funded byMCIN/AEI/10.13039/50-
1100011033; MAGIST: PID2019-105221RB-C41, partially funded by
MCIN/ AEI/10.13039/501100011033; GRC: ED431C 2021/53, par-
tially funded by GAIN/Xunta de Galicia; CITIC is funded by the
Xunta de Galicia through the collaboration agreement between
the Department of Culture, Education, Vocational Training and
Universities and the Galician universities for the reinforcement of
the research centers of the Galician University System (CIGUS).

REFERENCES
[1] Faheem Ahmed and Luiz F. Capretz. 2010. A Business Maturity Model of Software

Product Line Engineering. Information Systems Frontiers 13, 4 (2010), 543–560.
https://doi.org/10.1007/s10796-010-9230-8

[2] FaheemAhmed, Luiz F. Capretz, and Shahbaz A. Sheikh. 2007. Institutionalization
of Software Product Line: An Empirical Investigation of Key Organizational
Factors. Journal of Systems and Software 80, 6 (2007), 836–849. https://doi.org/
10.1016/j.jss.2006.09.010

[3] Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019.
Migrating the Android Apo-Games into an Annotation-Based Software Product
Line. In International Systems and Software Product Line Conference (SPLC). ACM,
103–107. https://doi.org/10.1145/3336294.3342362

[4] Suilen H. Alvarado, Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira, and
Ángeles S. Places. 2020. Developing Web-Based Geographic Information Systems
with a DSL: Proposal and Case Study. Journal of Web Engineering 19, 2 (2020),
167–194.

[5] Sofia Ananieva, Sandra Greiner, Jacob Krüger, Lukas Linsbauer, Sten Grüner,
Timo Kehrer, Thomas Kühn, Christoph Seidl, and Ralf Reussner. 2022. Unified
Operations for Variability in Space and Time. ACM, 7:1–10. https://doi.org/10.
1145/3510466.3510483

[6] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer. https://doi.org/10.1007/978-3-642-
37521-7

[7] Maider Azanza, Leticia Montalvillo, and Oscar Díaz. 2021. 20 Years of Industrial
Experience at SPLC: A Systematic Mapping Study. In International Systems and
Software Product Line Conference (SPLC). ACM, 172–183. https://doi.org/10.1145/
3461001.3473059

[8] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus
Schmid, Tanya Widen, and Jean-Marc DeBaud. 1999. PuLSE: A Methodology
to Develop Software Product Lines. In Symposium on Software Reusability (SSR).
ACM, 122–131. https://doi.org/10.1145/303008.303063

[9] Jan Bosch. 2002. Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organization. In International Software Product Line Conference
(SPLC). Springer, 257–271. https://doi.org/10.1007/3-540-45652-x_16

[10] Jan Bosch and Petra M. Bosch-Sijtsema. 2011. Introducing Agile Customer-
Centered Development in a Legacy Software Product Line. Software: Practice and
Experience 41, 8 (2011), 871–882. https://doi.org/10.1002/spe.1063

[11] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys 30, 2 (1998), 232–282.
https://doi.org/10.1145/280277.280280

[12] Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira, Ángeles S. Places, and
Jennifer Pérez. 2017. Web-Based Geographic Information Systems SPLE: Domain

https://doi.org/10.1007/s10796-010-9230-8
https://doi.org/10.1016/j.jss.2006.09.010
https://doi.org/10.1016/j.jss.2006.09.010
https://doi.org/10.1145/3336294.3342362
https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/3461001.3473059
https://doi.org/10.1145/3461001.3473059
https://doi.org/10.1145/303008.303063
https://doi.org/10.1007/3-540-45652-x_16
https://doi.org/10.1002/spe.1063
https://doi.org/10.1145/280277.280280

How to Retire and Replace a Software Product Line SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

Analysis and Experience Report. In International Systems and Software Product
Line Conference (SPLC). ACM, 190—-194. https://doi.org/10.1145/3106195.3106222

[13] Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira, and Ángeles S. Places. 2018.
Generation of Web-Based GIS Applications through the Reuse of Software Arte-
facts. In International Symposium on Web and Wireless Geographical Information
Systems (W2GIS). Springer, 11–14. https://doi.org/10.1007/978-3-319-90053-7_2

[14] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS). ACM, 173–182. https://doi.org/10.1145/
2110147.2110167

[15] David de Castro, Alejandro Cortiñas, Miguel R. Luaces, Óscar Pedreira, and
Ángeles S. Places. 2022. Improving the Customization of Software Product Lines
through the Definition of Local Deatures. In International Systems and Software
Product Line Conference (SPLC). ACM, 199–209. https://doi.org/10.1145/3546932.
3547006

[16] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019. Migrat-
ing Java-Based Apo-Games into a Composition-Based Software Product Line. In
International Systems and Software Product Line Conference (SPLC). ACM, 98–102.
https://doi.org/10.1145/3336294.3342361

[17] Deepak Dhungana, Paul Grünbacher, Rick Rabiser, and Thomas Neumayer. 2010.
Structuring the Modeling Space and Supporting Evolution in Software Product
Line Engineering. Journal of Systems and Software 83, 7 (2010), 1108–1122.
https://doi.org/10.1016/j.jss.2010.02.018

[18] Ivan do Carmo Machado, John D. McGregor, Yguaratã C. Cavalcanti, and Ed-
uardo S. De Almeida. 2014. On Strategies for Testing Software Product Lines: A
Systematic Literature Review. Information and Software Technology 56, 10 (2014),
1183–1199. https://doi.org/10.1016/j.infsof.2014.04.002

[19] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the Source
Code of Multiple Software Variants for Reuse Potential. InWorking Conference on
Reverse Engineering (WCRE). IEEE, 303–307. https://doi.org/10.1109/wcre.2011.44

[20] Ulrik Eklund and Håkan Gustavsson. 2013. Architecting Automotive Product
Lines: Industrial Practice. Science of Computer Programming 78, 12 (2013), 2347–
2359. https://doi.org/10.1016/j.scico.2012.06.008

[21] Emelie Engström and Per Runeson. 2011. Software Product Line Testing - A
Systematic Mapping Study. Information and Software Technology 53, 1 (2011),
2–13. https://doi.org/10.1016/j.infsof.2010.05.011

[22] Stefan Ferber, Jürgen Haag, and Juha Savolainen. 2002. Feature Interaction and
Dependencies: Modeling Features for Reengineering a Legacy Product Line. In
International Software Product Line Conference (SPLC). Springer, 235–256. https:
//doi.org/10.1007/3-540-45652-X_15

[23] Thomas S. Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo
Zhang. 2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned
and Way Ahead. In International Systems and Software Product Line Conference
(SPLC). ACM, 252–261. https://doi.org/10.1145/2934466.2934491

[24] Cristina Gacek and Michalis Anastasopoules. 2001. Implementing Product Line
Variabilities. In Symposium on Software Reusability (SSR). ACM, 109–117. https:
//doi.org/10.1145/375212.375269

[25] ISO 14813-1:2015(E). 2015. Intelligent transport systems — Reference model
architecture(s) for the ITS sector — Part 1: ITS service domains, service groups
and services.

[26] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University.

[27] Mahvish Khurum and Tony Gorschek. 2009. A Systematic Review of Domain
Analysis Solutions for Product Lines. Journal of Systems and Software 82, 12
(2009), 1982–2003. https://doi.org/10.1016/j.jss.2009.06.048

[28] Peter Knauber, Jesus Bermejo, Günter Böckle, Julio C. S. do Prado Leite, Frank J.
van der Linden, Linda M. Northrop, Michael Stark, and David M. Weiss. 2002.
Quantifying Product Line Benefits. In International Workshop on Software Product-
Family Engineering (PFE). Springer, 155–163. https://doi.org/10.1007/3-540-
47833-7_15

[29] Heiko Koziolek, Thomas Goldschmidt, Thijmen de Gooijer, Dominik Domis,
Stephan Sehestedt, Thomas Gamer, and Markus Aleksy. 2016. Assessing Software
Product Line Potential: An Exploratory Industrial Case Study. Empirical Software
Engineering 21, 2 (2016), 411–448. https://doi.org/10.1007/s10664-014-9358-0

[30] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering (PFE). Springer,
282–293. https://doi.org/10.1007/3-540-47833-7_25

[31] Jacob Krüger. 2021. Understanding the Re-Engineering of Variant-Rich Systems:
An Empirical Work on Economics, Knowledge, Traceability, and Practices. Ph. D.
Dissertation. Otto-von-Guericke UniversityMagdeburg. https://doi.org/10.25673/
39349

[32] Jacob Krüger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform. In International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 21:1–10.
https://doi.org/10.1145/3377024.3377044

[33] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs
of Clone- and Platform-Oriented Software Reuse. In Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 432–444. https://doi.org/10.1145/3368089.3409684

[34] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake,
and Thomas Leich. 2018. Apo-Games - A Case Study for Reverse Engineering
Variability from Cloned Java Variants. In International Systems and Software
Product Line Conference (SPLC). ACM, 251–256. https://doi.org/10.1145/3233027.
3236403

[35] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A
Round-Trip Engineering Process Model for Adopting and Evolving Product Lines.
In International Systems and Software Product Line Conference (SPLC). ACM, 2:1–
12. https://doi.org/10.1145/3382025.3414970

[36] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting Rid of Clone-And-Own: Moving to a Software Product Line for
Temperature Monitoring. In International Systems and Software Product Line
Conference (SPLC). ACM, 189–189. https://doi.org/10.1145/3233027.3233050

[37] Miguel A. Laguna and Yania Crespo. 2013. A Systematic Mapping Study on
Software Product Line Evolution: From Legacy System Reengineering to Product
Line Refactoring. Science of Computer Programming 78, 8 (2013), 1010–1034.
https://doi.org/10.1016/j.scico.2012.05.003

[38] Dong Li and Carl K. Chang. 2009. Initiating and Institutionalizing Software
Product Line Engineering: From Bottom-Up Approach to Top-Down Practice. In
Annual Computer Software and Applications Conference (COMPSAC). IEEE, 53–60.
https://doi.org/10.1109/compsac.2009.17

[39] Robert Lindohf, Jacob Krüger, Erik Herzog, and Thorsten Berger. 2021. Software
Product-Line Evaluation in the Large. Empirical Software Engineering 26, 30
(2021), 1–41. https://doi.org/10.1007/s10664-020-09913-9

[40] Maíra Marques, Jocelyn Simmonds, Pedro O. Rossel, and María Cecilia Bastarrica.
2019. Software Product Line Evolution: A Systematic Literature Review. Infor-
mation and Software Technology 105 (2019), 190–208. https://doi.org/10.1016/j.
infsof.2018.08.014

[41] Najam Nazar and T. M. J. Rakotomahefa. 2016. Analysis of a Small Company
for Software Product Line Adoption — An Industrial Case Study. International
Journal of Computer Theory and Engineering 8, 4 (2016), 313–322. https://doi.
org/10.7763/ijcte.2016.v8.1064

[42] Damir Nešić, Jacob Krüger, S, tefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM,
62–73. https://doi.org/10.1145/3338906.3338974

[43] Femi G. Olumofin and Vojislav B. Mišić. 2007. A Holistic Architecture Assessment
Method for Software Product Lines. Information and Software Technology 49, 4
(2007), 309–323. https://doi.org/10.1016/j.infsof.2006.05.003

[44] Juliana Alves Pereira, Sebastian Krieter, Jens Meinicke, Reimar Schröter, Gunter
Saake, and Thomas Leich. 2016. FeatureIDE: Scalable Product Configuration of
Variable Systems. In International Conference on Software Reuse (ICSR). Springer,
397–401. https://doi.org/10.1007/978-3-319-35122-3_27

[45] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering. Springer. https://doi.org/10.1007/3-540-28901-1

[46] Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botterweck, Matthias Galster,
Iris Groher, and Danny Weyns. 2018. A Study and Comparison of Industrial vs.
Academic Software Product Line Research Published at SPLC. In International
Systems and Software Product Line Conference (SPLC). ACM, 14–24. https://doi.
org/10.1145/3233027.3233028

[47] Luisa Rincón, Raúl Mazo, and Camille Salinesi. 2019. Analyzing the Convenience
of Adopting a Product Line Engineering Approach: An Industrial Qualitative
Evaluation. In International Systems and Software Product Line Conference (SPLC).
ACM, 90–97. https://doi.org/10.1145/3307630.3342418

[48] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned Product
Variants: From Ad-Hoc to Managed Software Product Lines. International Journal
on Software Tools for Technology Transfer (2015), 627–646. https://doi.org/10.
1007/s10009-014-0347-9

[49] Klaus Schmid, Isabel John, Ronny Kolb, and Gerald Meier. 2005. Introducing the
PuLSE Approach to an Embedded System Population at Testo AG. In International
Conference on Software Engineering (ICSE). ACM, 544–552. https://doi.org/10.
1145/1062455.1062552

[50] Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software 19, 4 (2002), 50–57. https://doi.org/10.
1109/ms.2002.1020287

[51] Miroslaw Staron. 2020. Action Research in Software Engineering. Springer. https:
//doi.org/10.1007/978-3-030-32610-4

[52] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Bench-
marking the Techniques for the Evolution of Variant-Rich Systems. In Inter-
national Systems and Software Product Line Conference (SPLC). ACM, 177–188.
https://doi.org/10.1145/3336294.3336302

[53] Mikael Svahnberg and Michael Mattsson. 2002. Conditions and Restrictions
for Product Line Generation Migration. In International Workshop on Software

https://doi.org/10.1145/3106195.3106222
https://doi.org/10.1007/978-3-319-90053-7_2
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/3546932.3547006
https://doi.org/10.1145/3546932.3547006
https://doi.org/10.1145/3336294.3342361
https://doi.org/10.1016/j.jss.2010.02.018
https://doi.org/10.1016/j.infsof.2014.04.002
https://doi.org/10.1109/wcre.2011.44
https://doi.org/10.1016/j.scico.2012.06.008
https://doi.org/10.1016/j.infsof.2010.05.011
https://doi.org/10.1007/3-540-45652-X_15
https://doi.org/10.1007/3-540-45652-X_15
https://doi.org/10.1145/2934466.2934491
https://doi.org/10.1145/375212.375269
https://doi.org/10.1145/375212.375269
https://doi.org/10.1016/j.jss.2009.06.048
https://doi.org/10.1007/3-540-47833-7_15
https://doi.org/10.1007/3-540-47833-7_15
https://doi.org/10.1007/s10664-014-9358-0
https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.25673/39349
https://doi.org/10.25673/39349
https://doi.org/10.1145/3377024.3377044
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1145/3233027.3233050
https://doi.org/10.1016/j.scico.2012.05.003
https://doi.org/10.1109/compsac.2009.17
https://doi.org/10.1007/s10664-020-09913-9
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.7763/ijcte.2016.v8.1064
https://doi.org/10.7763/ijcte.2016.v8.1064
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1016/j.infsof.2006.05.003
https://doi.org/10.1007/978-3-319-35122-3_27
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1145/3233027.3233028
https://doi.org/10.1145/3233027.3233028
https://doi.org/10.1145/3307630.3342418
https://doi.org/10.1007/s10009-014-0347-9
https://doi.org/10.1007/s10009-014-0347-9
https://doi.org/10.1145/1062455.1062552
https://doi.org/10.1145/1062455.1062552
https://doi.org/10.1109/ms.2002.1020287
https://doi.org/10.1109/ms.2002.1020287
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1145/3336294.3336302

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan Víctor Lamas et al.

Product-Family Engineering (PFE). Springer, 143–154.
[54] Thomas Thüm, Sebastian Krieter, and Ina Schaefer. 2018. Product Configura-

tion in the Wild: Strategies for Conflicting Decisions in Web Configurators. In
International Configuration Workshop (ConfWS). CEUR-WS.org, 1–8.

[55] Frank J. van der Linden. 2002. Software Product Families in Europe: The Esaps &
Café Projects. IEEE Software 19, 4 (2002), 41–49. https://doi.org/10.1109/ms.2002.
1020286

[56] Frank J. van der Linden. 2005. Family Evaluation Framework: Overview & Intro-
duction. Technical Report PH-0503-01. Philips.

[57] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer. https://doi.org/10.1007/978-3-540-71437-8

[58] Claes Wohlin and Per Runeson. 2021. Guiding the Selection of Research Method-
ology in Industry–Academia Collaboration in Software Engineering. Information
and Software Technology 140 (2021), 106678:1–14. https://doi.org/10.1016/j.infsof.
2021.106678

[59] Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Assessing
Merge Potential of Existing Engine Control Systems into a Product Line. In
International Workshop on Software Engineering for Automotive Systems (SEAS).
ACM, 61–67. https://doi.org/10.1145/1138474.1138485

[60] Bo Zhang, Slawomir Duszynski, andMartin Becker. 2016. Variability Mechanisms
and Lessons Learned in Practice. In International Workshop on Conducting Em-
pirical Studies in Industry (CESI). ACM, 14–20. https://doi.org/10.1145/2897045.
2897048

https://doi.org/10.1109/ms.2002.1020286
https://doi.org/10.1109/ms.2002.1020286
https://doi.org/10.1007/978-3-540-71437-8
https://doi.org/10.1016/j.infsof.2021.106678
https://doi.org/10.1016/j.infsof.2021.106678
https://doi.org/10.1145/1138474.1138485
https://doi.org/10.1145/2897045.2897048
https://doi.org/10.1145/2897045.2897048

	Abstract
	1 Introduction
	2 Related Work
	3 Study Setting and Methodology
	3.1 Context of our Research
	3.2 Methodology

	4 Conduct
	4.1 First Iteration: Definition of the SPL
	4.2 Second Iteration: Review of the GIS SPL
	4.3 Iteration 3: Implementation of the new SPL
	4.4 Iteration 4: Definition of the Methodology

	5 Discussion and Learning
	5.1 Answering the Research Questions
	5.2 Lessons Learned

	6 Conclusion
	Acknowledgments
	References

