
Process Mining from Jira Issues at a Large Company

Bavo Coremans∗†, Arjen L. Klomp∗, Satrio A. Rukmono†, Jacob Krüger†, Dirk Fahland†, Michel R. V. Chaudron†
∗Thermo Fisher Scientific, Eindhoven, The Netherlands

{ bavo.coremans | arjen.klomp }@thermofisher.com
†Eindhoven University of Technology, Eindhoven, The Netherlands

{ s.a.rukmono | j.kruger | d.fahland | m.r.v.chaudron }@tue.nl

Abstract—Maintaining a software system is a continuous and
complex process, typically following a workflow defined by the
responsible organization. However, in practice, developers often de-
viate from the defined process due to personal preferences, varying
customer requirements, or urgent deadlines. Such deviations may
cause problems later on, or they may indicate potential process
improvements. To deal with deviations and improve processes, it is
first necessary to fully understand the processes actually employed
by developers. For this purpose, process-mining techniques have
been proposed that primarily build on version-control data. In this
paper, we present a complementary process-mining technique that
uses Jira issues to recover process activities not visible in version-
control data, particularly focusing on developers’ interactions
with issues and each other. We conducted a case study with 74
repositories of 24 developer teams from one large international
company to understand the technique’s merits. Our technique
revealed process differences across teams and depending on the
types of Jira issues, providing novel insights for the company
that helped to better understand the employed processes.

Index Terms—Process Mining, Jira Issues, Software Develop-
ment, Maintenance, Evolution

I. INTRODUCTION

Developing and maintaining a software system is a socio-
technical process that requires collaboration and interactions
among developers and other stakeholders [9], [30]. While stan-
dard processes exist for software development, such as waterfall,
agile, or platform-engineering processes [4], [9], [16], [20], [25],
the actual process employed by a team of developers in an orga-
nization may deviate or evolve from these standards [15], [22],
[27], [28], [31], [32]. For instance, the standard process may
not be clearly communicated, or the developers may deviate
from it to meet an urgent deadline. Such deviations can cause
inconsistencies in the system’s documentation, delays in follow-
up activities, unfulfilled requirements, or miscommunication.

To tackle deviations and improve processes, it is important to
identify and analyze the processes that are actually employed
in an organization, in contrast to the processes assumed to be
used. Researchers have proposed various techniques for mining
and visualizing processes from different sources, primarily
using version-control data [13], [19], [26], [29]. Most of
such techniques focus on version-control data because it is
automatically stored, is of high quality, and reliably represents
what developers are doing. However, such techniques may miss
activities outside of version-control systems, such as developers’
interactions. Thus, a few works have also integrated other
sources like issue-tracking systems [12], [14].

In this paper, we introduce a complementary technique for
process mining from Jira issues that we developed for and have
used at Thermo Fisher Scientific (TFS). Jira issues involve doc-
umentation that can provide further information on a team and
its interactions (e.g., urgency of a feature request, responsible
developers, issue status) [17]. We derived our technique based
on a typical design-science workflow [8] and evaluated it via
a multi-case study [38]. Our case study involves data from 24
developer teams working on 74 repositories for more than one
year at TFS. The results show that our technique can be used to
mine process activities outside of version-control systems, and
it helped identify differences between the processes employed
by teams as well as for different types of issues.

More specifically, we contribute the following:
• We describe a complementary technique for process

mining that relies on Jira issues (Section II).
• We evaluate our technique by employing it in a multi-case

study on Jira issues from 74 software repositories of 24
developer teams at TFS (Section III).

• We present the results of our case study (Section IV) and
discuss their implications (Section V).

• We share a prototype of our technique in a persistent
open-access repository [5].

Our technique complements existing research (Section VII),
and others can build on it in the future. The results of our case
study indicate that our technique can help practitioners inspect,
analyze, and improve processes.

II. MINING PROCESSES FROM JIRA ISSUES

Next, we describe our process-mining technique, which we de-
veloped based on recommendations for design-science research
by Dresch et al. [8] and for process mining by Aalst [34].

A. Context, Problem Definition, and Proposed Solution

We conducted this work as an industry-academia collaboration
at TFS, a large international company that operates in the
domains of laboratory equipment, biotechnology, and health-
care. With a global workforce of over 130,000 employees and
generating more than $39 billion in revenue in 2021, TFS is
listed in the S&P 100. We collaborated with a department
responsible for the development and integration of software
for electron microscopes, located at TFS’s office in Eindhoven
(The Netherlands). This collaborative partnership allowed us
to iteratively design our technique in a real-world context,

including tests of intermediate prototypes, gathering feedback
on the results, and conducting a multi-case study to gain insights
into the mined processes (cf. Section III).

During an ongoing collaboration, we encountered challenges
related to understanding details about TFS’s processes and
the causes for deviations we observed across different teams.
For example, it was unclear why certain Jira issues remained
in a particular state or how specific customer requests, such
as urgent bug fixes, were handled among developers. To
address these challenges and improve our understanding of
the processes at TFS, it was crucial to gain a comprehensive
overview of the current processes and potential deviations
from the intended ones. However, we also experienced that
existing solutions for process mining (cf. Section VII) were
less effective in eliciting the processes. We discovered that the
most significant deviations and concerns for the developers
arose not during the implementation phase represented in the
version-control system but rather in their interactions with
each other and with Jira issues. So, we defined our research
objective as developing a technique that can recover and
visualize processes from Jira issues used by the teams. By
focusing on the interactions and communication patterns among
team members through the lens of Jira issues, our technique
is intended to provide a better understanding of the actual
processes employed by the teams.

Jira1 is a widely established issue tracker with integrated
tooling, such as project management via Kanban boards [21],
[23], [24]. Therefore, any technique capable of mining pro-
cesses from Jira issues can assist practitioners and researchers
in comprehending their development processes. Specifically,
Jira issues can provide a reliable basis for mining information
on developers’ activities, for instance, regarding which issues
are addressed when by whom. We conducted multiple iterations
together with TFS to design, develop, and test our technique and
visualizations. In the following, we describe these two artifacts.

B. Development: Mining Processes

Structure of Jira Issues. To design our technique, we first
needed to understand the structure of Jira issues. For this
purpose, we investigated the official documentation1 and how
Jira issues are used by the developers at TFS. At TFS, every
task has a corresponding Jira issue with an identifying key
for referencing. That key comprises a team prefix followed
by a number, with each team having its own board in which
their respective issues are listed. For its Scrum workflow, TFS
builds on five default issue types defined in Jira:
Epics represent large tasks that involve multiple stories and

are typically used for a large feature or an overarching
goal a team is pursuing.

Stories represent a stand-alone task or a task that is part of
an epic. Each story should represent a piece of work that
does not need to be broken down further, even though
individual teams may decide to do so.

Bugs represent a problem identified in the software.

1https://www.atlassian.com/software/jira

Tasks represent work that needs to be done ad hoc; in contrast
to stories, which are usually created for planned work.

Sub-tasks represent small tasks that are part of a larger one.
During our domain analysis, we found that the developers
at TFS mostly used the types epic, story, bug, and sub-task.
Furthermore, issues can be linked to each other, for instance,
via parent-child relationships indicating that an issue on a lower
level of the hierarchy is part of the issue above. Such links
can also intersect the hierarchy and can be of one of 11 types:
blocks, relates, duplicates, references, clones, follows, treats,
contains, causes, split from, and discovered by. When verifying
the data we collected at TFS, we used JQL queries, a web
interface provided by Jira that accepts queries similar to SQL,
to confirm that the task issue type is not used in the projects
we investigated and that all issues of type sub-task have a
parent issue and are not standalone tasks.

Each Jira issue is basically a structured document involving
three parts. First, the most important fields of each Jira issue
reside at the top, including a title, description, status, resolution,
assignee, and reporter. Second, more specific information is
provided, which involves a backlog classification, fix version,
story points, sprint, priority, linked issues, commits, and merge
requests referring to the issue. Finally, each issue reserves space
for the developers to document additional information and
provides an overview of the changes made to the issue fields.

Notation. We decided to use the Petri Net notation as a feasible
representation for modeling processes, on the implementation as
well as visualization level [33]. In this notation, circles represent
places, rectangles denote transitions between places, and arrows
connect these two elements by denoting the transitions (i.e.,
actions) that can be taken from one place to reach another.
For our technique, a place represents the state2 a Jira issue is
in, for which the whole history is available through the log
associated with an issue. Then, the goal of our process-mining
technique is to recover the transitions between places from the
Jira issues and their histories.

We use such a place-based representation to recover pro-
cesses because it is not known in advance whether there are
intertwined processes when reconstructing the process graph
for a set of issues. The place-based reconstruction allows for
the presence of multiple initial and final places. Moreover,
developers can access pages within Jira that display issues in
a specific place, such as all issues in the current sprint or only
issues assigned to a particular person. A place-based process
mining can provide insights into when issues lose employees’
attention in Jira views. So, by using Petri Nets as a place-
based representation, we can better represent the real world
and obtain more in-depth insights. After multiple iterations,
refinements, and test runs of our technique on data by TFS,
we have implemented the following algorithms.

Creating Process Graphs. To mine processes from Jira issues,
we use Algorithm 1. In principle, the algorithm takes a number
of Jira issues as input (line 1) and creates an empty Petri net

2A state includes, but is not to be confused with, an issue’s status.

https://www.atlassian.com/software/jira

Algorithm 1 MineProcess
1: function MINEPROCESS(issues)
2: G← empty Petri net
3: for issue in issues do
4: AddIssueToProcess(issue,G)
5: end for
6: CorrectProcess(G)
7: return G
8: end function

graph (line 2). Then, the algorithm loops through all issues,
adding each to the graph by calling Algorithm 2 (lines 3–
5). Finally, the algorithm calls Algorithm 3 to correct some
inherent mismatches between issues (line 6) before returning
the created Petri Net (line 7).

To add an issue to the Petri Net graph, we utilize Algorithm 2
(line 1). The algorithm first identifies the state of the issue
(line 2) and, if the state does not exist in the graph, adds
it as a place in the Petri Net graph (lines 3–5). Then, the
algorithm iterates through all actions in the issue’s history
from newest to oldest (line 6). It reverts each action on the
current state s to obtain the previous state s′ (line 7) and
adds a corresponding place to the graph if it does not already
exist (lines 8–10). Additionally, if there is no corresponding
transition between s and s′ at this point, the algorithm adds the
action as a transition between the two places in the graph (lines
11–13). The algorithm then proceeds to the next action in the
history and repeats the process (line 14). Finally, with the first
action in the chronological order of the issue, the algorithm
reaches the initial state of the issue and stops. Consequently,
all issue states and transitions between them that have occurred
in practice are added to the Petri Net graph, representing the
process through which the specified issue progressed.

To determine the state of an issue (i.e., the places of the
graph), we take into account various fields of a Jira issue,
specifically the issue type, resolution, status, assignee, fix
version, linked commits, and project. However, we do not
use all of these values directly in the state representation. For
certain fields, we consider whether they are filled in and how
many values they contain. As one example, we count the
number of versions filled in for the field fix version, while we
directly use the values of the field issue type. If two states have
identical representations, we consider them equal in our process
graph, which may result in certain actions not transitioning an
issue to a different place. Consequently, self-transitions may
occur in the process when a team member updates an issue’s
description or changes non-observed fields. We derived this
identification step during our testing at TFS, in which we also
found that we had to exclude self-transitions.

Algorithm 2 adds each place across all issues only once.
This results in the merging of places from different issues.
For example, issues #1 and #2 may start at places P1 and
P2 respectively, at some point converge into a common place
Pc, but eventually diverge to P ′

1 and P ′
2. The resulting graph

allows issue #1 to traverse a path P1 → Pc → P ′
2, which

Algorithm 2 AddIssueToProcess
1: procedure ADDISSUETOPROCESS(issue, G)
2: s← getCurrentState(issue)
3: if Place(s) /∈ G then
4: add Place(s) to G
5: end if
6: for action in issue.history do
7: s′ ← revert action on s
8: if Place(s′) /∈ G then
9: add Place(s′) to G

10: end if
11: if Transition(s′, s) /∈ G then
12: add Transition(s′, s) to G
13: end if
14: s← s′

15: end for
16: end procedure

does not occur in the actual data. To correct the graph, we
split the places that represent the same state of different issues,
adding one respective place for each issue and linking it to the
appropriate transitions (Algorithm 3). As a result, we obtain a
corrected graph that rectifies the incorrect merges and increases
the precision of the graph, as described by Aalst [34].

To achieve this correction, Algorithm 3 iterates through
all places in the obtained Petri Net graph (line 2). First, it
computes the power set of outgoing transitions (OTPowerSet)
and then removes the set of no transitions and the set of all
transitions (lines 3–4), as it is not helpful to split off none
or all transitions from a place. Next, the algorithm loops over
each set of outgoing transitions in the outgoing transition
power set (line 5) to identify the set of incoming transitions
through which paths pass, ending up in one of the transitions
included in the outgoing transitions set (lines 6–16). If all paths
going through these incoming transitions are identical to those
leaving through the outgoing transitions, the algorithm splits
off the transition(s) from the place (lines 13–15). It is important
to note that Algorithm 3 considers paths, not issues, passing
through a place, as issues can traverse a place multiple times.
The algorithm also stops splitting off transitions if a place has
only one incoming or outgoing transition left, or when the
set of outgoing transitions is as large as the total number of
outgoing transitions (line 6). If transitions that were previously
split off are no longer connected to the respective place (line
9), the algorithm skips to the next power set element. Finally,
splitPlace is called to create a duplicate of a place, transfer
the incoming and outgoing transitions of the old place to the
new place, and handle duplication or self-transitions (line 14).

When incorporating more issues into a Petri Net graph
generated by Algorithm 1 later on (i.e., extending or evolving
it), we first reverse the changes made via Algorithm 3 by
merging all places with identical state representations again.
This step is necessary because Algorithm 2 assumes that all
state representations of places in the graph G are unique. Once
we have added the new issues, we need to reapply Algorithm 3

Algorithm 3 CorrectProcess
1: procedure CORRECTPROCESS(G)
2: for place ∈ G.places do
3: OTPowerSet← powerSet(place.outgoingTransitions) sorted ascending by size
4: remove set of all transitions and set of no transitions from OTPowerSet
5: for outTransitions ∈ OTPowerSet do
6: if |place.incomingTransitions| ≤ 1

or |place.outgoingTransitions| ≤ 1
or |outTransitions| = |place.outgoingTransitions| then

7: break
8: end if
9: if not all outTransitions in place.outgoingTransitions then

10: continue
11: end if
12: inTransitions← {t | t ∈ place.incomingTransitions, t.paths.outTransition ⊆ outTransitions}
13: if inTransitions.paths = outTransitions.paths then
14: splitPlace(place, inTransitions, outTransitions)
15: end if
16: end for
17: end for
18: end procedure

to G to eliminate paths that are not observed in the data as
described above.

C. Development: Visualizing Processes

Visually, a Petri Net graph consists of two shapes: Circles
for places and rectangles for transitions. These shapes are
connected by arrows to display the direction in which each
path must be read. To make the graphs more suitable for visual
analyses, we customized their styling. Please note that the
coloring we used and display in this paper (e.g., Figure 3)
is not necessarily color-blind or grayscale safe due to the
multitude of colors. However, this can be customized in our
technique, and the figures are still comprehensible.

Coloring. We color transitions to gain insight into who (e.g.,
a bot, engineer, product owner) performs what action. So, a
rectangle’s color in the displayed Petri Nets shows the role of
the actors involved. If more than one actor role is involved
in a transition, the rectangle colors are proportionally to the
number of times each role performed the action. Originally,
we label each place with the name of the respective issue’s
status, and places as well as transitions with how often they
occur (i.e., differences in the numbers indicate paths that occur
less often and are omitted). Due to confidentiality and for
better readability, we omit the places’ names in this paper.
Instead, we derived (cf. Section III) a classification of the issue
statuses and added respective background colors. Moreover,
while initial places (i.e., the starting state of a Jira issue) have
thicker black borders, final places have green stripes if issues
end up “done” and red stripes if they end up “rejected.”

Arrow Thickness. We represent the time that passes between
places and transitions by varying the thickness of the connecting
arrows. Specifically, the thickness of an arrow from a transition

to a place represents the average duration between that action
and the action following it. Conversely, the thickness of an
arrow from a place to a transition represents the average
duration between the action performed by the transition and the
action performed before it. We add such temporal information
only to transitions connecting two different places.

Layout. We use the CoSE-Bilkent layout algorithm [6] to
generate the layout of the final Petri Net graph. However,
manual rearrangements of places and transitions may be
necessary to enhance the legibility of the graphs. Although we
tested an improved and faster version of this layout algorithm
with constraint support, it did not result in better layouts [2].

The final graph includes all places and actions that occur
in the mined process, resulting in an overly detailed and large
graph that contains sequences of places and actions visited
only once. Such types of graphs are referred to as “spaghetti
models” by Günther and van der Aalst [11], caused by less-
structured processes or parts of processes. To solve this issue,
they remove edges and nodes by clustering them together with
neighbors. In our implementation, we can filter out places and
actions not visited by more than a certain percentage of all
Jira issues (i.e., five or ten percent in our case study), reducing
the graph’s size and facilitating the identification of the main
issue workflows. This method improves the legibility of the
graphs we present in Section IV [34].

III. CASE STUDY

To assess the usefulness of our technique, we conducted a
multi-case study [38], which we describe in this section.

A. Case Description

We conducted our multi-case study by mining processes of
24 teams responsible for integrating software components for

0

5

10

15

20

25

#
 t

e
a

m
s

bugs resolved in a period # features resolved in a period

0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 800

bugs # features

Fig. 1. Distributions of the number of bugs and features resolved per period.

electron microscopes at TFS. For this purpose, we collected
Jira issues from 74 repositories for five components of the
electron-microscope software used by the teams. We excluded
around 75 other repositories that had few commits (i.e.,
around 10 commits made by developers over 1.5 years), as
they primarily stored rarely changing interfaces for legacy
components. In contrast, the 74 repositories we selected
involved multiple commits by developers per week or even per
day. We analyzed data from March 8, 2021, to June 1, 2022, as
the developers began to label their commits with relevant issue
keys in early 2021, and a new release cycle started in March
2021. During this period, the developers created and resolved
a total of 26,109 Jira issues for five software releases. Among
these issues, we identified 14,739 non-duplicates, with 12,716
being created and 12,183 being resolved within this time span.

To simplify the mined process graphs, reduce complexity,
and obtain more detailed insights, we separated bug and
feature workflows due to the significant differences identified
by inspecting first versions of the mined graphs. We only
consider the workflow of the main bug or feature story in
this paper (cf. Section IV) to further simplify the graphs, as
including related issues and sub-tasks would introduce clutter.
Additionally, we do not display all actions performed on bugs
or features, as many issues are touched by more than 100
actions due to automated messages from the software integrated
into Jira. We exclude actions that are not comparable across
teams, such as differences in issue labeling names. Note that
all of these adaptations are for the sake of readability and
simplicity only. Our goal in this case study was to use the mined
processes to shed light on the actual processes performed by
the organizations’ developers, helping them understand typical
workflows and the causes for deviations.

B. Further Data Collection and Analysis

Besides employing our process-mining technique on the 14,739
non-duplicate Jira issues, we collected further data at TFS. We
analyzed this data to provide an overview of our dataset and
put our results into context. Overall, the following analysis
underpins that our dataset of Jira issues represents a realistic

0

5

10

15

20

#
 t

e
a

m
s

Time spent on bugs in a period Time spent on features in a period

0 0100 200 300 400

time (business days) time (business days)

400200100 300

Fig. 2. Distribution of the time spent on bugs and features per period.

and large-scale software system, which is why we argue that
the teams represent appropriate cases for our evaluation.
Number of Bugs and Features. We recorded the number of
bugs and features per team that have at least one linked commit
during a specific time period. Each period here refers to the
time the developers worked on one specific release, so the
data builds on five different periods. In Figure 1, we show that
almost all teams resolve 0 to 30 bugs within each period (i.e.,
between releases), with a few exceptions in the 30 to 50 bugs
range. The teams commonly implement 0 to 50 features during
each period, with the number of team-period pairs steadily
declining as the number of features increases. Again, there are
a few exceptions, specifically in the range of 50 to 80 features.
Time to Resolve Bugs and Features. We measured the time
spent on resolving bugs and features in business/person days.
Precisely, it is the sum of time that issues have the status “in
progress,” meaning that a developer is actively working on
it. As we can see in Figure 2, multiple developers work in
parallel, and a developer can have multiple tasks in progress
concurrently. So, the total time in business days exceeds the
number of days in the development period. More time is spent
on implementing features than on bugs, with the time spent
on features being distributed between 0 and 400 business days,
and the time spent on bugs between 0 and 160 business days.
Bug and Feature Issue Structure. When discussing and
investigating TFS’s development processes with the team
members, we found that the teams (intend to) follow standard
processes. However, as we motivated, they were also aware
that they deviated from these processes and that some parts
of their workflow were unclear. So, we used our technique to
understand how the following processes looked in practice.

The teams typically follow similar processes when handling
bug reports. First, a bug is investigated by updating its
description with additional information on how to reproduce it,
sketching a solution, and identifying the software components
it affects. After this analysis, the findings are presented to
change and control boards (CCBs) to determine whether the
bug should be fixed or rejected. Common reasons for rejection
include that the bug is no longer relevant, that a fix is already

76 79 69 69

76 67 65 52

5 26

7 30

6

14

42

61
41

19

32

10

16

28

16

27

25

11 12

9 67

23

5

24

14

10

13

21

9

10 9

22

20

18

6

9

41

6

16

36

39

To Do In Progress In TestInvestigatedTo InvestigateInbox

Done

Rejected

Engineer

Unknown role

Bot

Product Owner

Software quality assurance

Fig. 3. The main bug-fixing process for team MOOSE. In this and subsequent figures, places and transitions are labeled with how many times they occur in
the project for the duration. The numbers may not add up because some places are filtered out. We refer to Section II-C for this and more explanation about
the features of the diagrams.

in progress, or that it actually represents expected behavior.
If the bug is not rejected by a CCB, the team proceeds with
fixing it and adds links to the commits and merge requests to
the bug’s Jira issue. The issue then moves to the status “in test”
to verify whether it is resolved before being marked as “done.”

Some teams document all actions on the original bug, while
others create separate story issues for investigation and solution.
For example, teams like ANTELOPE, MOOSE, and NEWT
(names anonymized) create a story for the investigation but
update the description of the original bug issue during that
same investigation. MOOSE and NEWT also create one or more
stories for a solution, depending on the size of the bug. In
contrast, team ANTELOPE uses the bug issue itself to track
the progress towards a solution, and in some cases, they fix
the bug during the investigation phase if it requires minimal
effort. Additionally, some teams choose to clone bug reports
for every repository that requires a change (i.e., a cause for the
duplicate Jira issues we found). During a qualitative inspection,
we identified two types of issue links, namely “split to” and
“clones” that are used to indicate relations between bugs and
Jira issues linked to investigation or solution. We found that
various other links are established for bugs to link, for example,
bugs to related Jira issues that start with words like “solve”
or “investigate,” sub-tasks of bugs to their investigation or
solution, and bug reports to epics (i.e., to group all bugs that
are resolved in a version). For our case study, we used such
links to identify duplicate issues and cleanse our dataset.

In the context of our analysis, feature issues refer to user
stories or tasks that are independent of bug-related Jira issues.

We did not include issues connected to bugs or linked to
epics in our analysis of the feature-implementation processes.
This allows us to focus specifically on issues directly related
to adding new features or improving existing ones in a
certain version—separating them from bug-related tasks and
the broader epic-level initiatives (cf. Section II-B).

Issue States. By inspecting the mined process graphs, we
manually abstracted specific issue states into more abstract
categories. For this purpose, we investigated each individual
place and clustered those representing similar concepts together,
similar to a card-sorting methodology. We use these abstracted
categories to provide an indication of the issues’ states, while
ensuring the confidentiality of the detailed data. Overall, we
derived eight categories: inbox, to investigate, investigated, to
do, in progress, in test, done, and reject. In the next section,
we exemplify these categories and how the concrete activities
they involve differ between the teams’ processes.

IV. RESULTS

Next, we present our findings on the bug fixing and feature
implementation processes we mined. We analyze the processes
of two teams (MOOSE, NEWT) when fixing bugs and the
feature implementation processes of two other teams (BISON,
JAGUAR). In particular, we report insights and differences that
were of interest to TFS for understanding their processes.

Processes for Fixing Bugs. In Figure 3, we illustrate the
bug-fixing process of team MOOSE that we mined from our
dataset. For this example, we display only places and transitions

SE Manager

14

14

42

31

31

23

23

96

13

30

23

1447

52

90

34

7919

100

23

33

9086

86 81 12

80 82

22 29

32

25

25

13

85

40

24

60

32

69

53

79

48

59

90

60

39

14

15

85

82

To Do In Progress In TestInvestigatedTo InvestigateInbox

Done

Rejected

23 11

Engineer

Unknown role

Bot

Product Owner

Software quality assurance

Fig. 4. The main bug-fixing process for team NEWT.

that represent at least five percent of the total number of the
respective entities of that team and exclude self-transitions. The
two initial places on the left-hand side correspond to the portals
where bugs can be submitted, and such issues are pulled into
the MOOSE repository by the product owner—indicated by the
cyan transition. Essentially, the five places in the beginning all
represent an inbox for bug issues in which any new bug report
is collected. In most cases, issues move directly from the inbox
to to investigate, while some issues go to rejected or to do
(i.e., particularly severe bugs) places. Issues spend considerably
more time in to investigate than in other places, with a mean
time of 17 days, after which they always move to investigated.

After a developer investigated a bug, it may be rejected or
marked as to do, a place in which some bug issues remain for a
longer time, as depicted by the thicker arrows in Figure 3. The
top two paths to the right of to do represent reproducible bugs
that are assigned a fixed version and sometimes an assignee
before moving out of this place. The path at the bottom
represents intermittent bugs that occur infrequently and are not
easily reproducible. In this part of the process, transitions are
mostly initiated by engineers (orange). Bugs progress through
in progress (i.e., the actual fixing) and then in test. For the latter
place, they are assigned a responsible team member for testing,
typically a software quality assurance team member (green),
who initiates the transition from in test to done within MOOSE.
Additionally, many transitions are automated by a bot (grey),
indicating actions performed by software integrated with Jira.
These automated transitions are triggered by rules set by the
teams, such as moving an issue to investigated if a story linked
to a commit starting with “Investigate” is marked as done.
However, these automated transitions are not always executed
correctly. For example, in team MOOSE, a team member may

move a sub-task to done, but forget (and the automation fails)
to move the respective story to in progress.

In Figure 4, we display the bug-fixing process of team NEWT.
The process is often similar to team MOOSE, since both teams
utilize standard bug workflow statuses for electron microscopes.
However, we can see some differences. In addition to the initial
places representing the bug submission portals, NEWT has an
additional initial place representing bugs created within their
Jira directly. By inspecting these issues qualitatively, we found
that these bugs are reported by the team’s test engineer and
team members. Please note again that Figure 3 displays only
paths that occur at least five percent of the places, so it does
not imply that there are no issues created by the test engineer—
although it is less common. Another difference is that NEWT
adds a fix version while the bug is in the place inbox, earlier
than team MOOSE. Furthermore, there is an absence of bugs
that remain in test for an extended period. The mean time
spent in test is three days, and the median is less than one day,
which is much shorter than in the other team. Additionally,
issues in team NEWT can move to done without ever having an
assignee assigned, which is something that does not occur in
team MOOSE. This seems to only happen for simpler bugs, as
bugs without an assignee move to done faster. When examining
the timing of the two paths from to investigate to done with
an assignee, it does not make a difference at which point the
assignee is added.

During the process of team MOOSE, issues spend most of
their time in to investigate and to do. However, long waiting
times are less concerning in to do, because teams cannot
work on everything simultaneously. It was interesting to see
such differences in the waiting times, and TFS considers this
an important point to investigate in the future. In contrast,

51 45 77

29

125127 106

24

1211

29

2615 9

99

9

56

74

17

15

59

75

26

18

55

65

21

14

55

67

20

14

Inbox To Do In Progress
Done

Rejected

10

Fig. 5. Feature implementation process for team BISON. We omit the legend
for brevity; the scheme is identical to the other process figures.

team NEWT does not have long waiting times in to do, which
suggests that once a bug is investigated and not rejected, it
gets picked up almost immediately, resulting in a median time
of less than one day spent in this place. This was an interesting
insight for TFS, and we aim to understand whether this situation
is caused by the complexity of the component, bug report, or
any other factor to understand how to decrease waiting times.
Processes for Implementing Features. Compared to the bug-
fixing processes, the feature-development process of team
BISON consists of fewer places. We illustrate the mined process
in Figure 5. Typically, issues start in one of three initial places
with or without a fixed version and assignee and can move to to
do with both fields unfilled, mainly for overdue administrative
reasons. The mean time for issues being in progress without a
fixed version or assignee is four seconds, compared to ten days
for those with these values assigned. Unlike bugs, features
developed by team BISON are not tested by someone else
before being moved to done, so there is no status in test in the
process. Verification sometimes occurs as a sub-task of a story,
but it is not part of the typically employed process. In general,
team BISON has a flexible workflow, with fields commonly
left unfilled and no strict order in which actions take place. As
with bugs, features spend a considerable time in places with a
to do status.

In contrast, team JAGUAR employs a more determinate
process, which we display in Figure 6. All issues that end up
done have a fixed version and an assignee, and only features
with a fixed version added move to in progress. If no assignee
has been added before an issue moves to in progress, it is
added while the issue is in this place. The team JAGUAR has
an optional testing step before issues are done. Interestingly,
about ten percent of the cases we observed involve issues

94

100

7211

35

26

20 19

57

76

50

23

51

7

88

17

115

16

82

15

82

10

21

100

16

15

75

20

97

7

1210

Inbox To Do In Progress In Test

Done

Rejected

Engineer

Software quality assurance

Architect

Support/mgr

Unknown role

Product Owner

Fig. 6. Feature-implementation process for team JAGUAR.

moving back to in test from done, and the mean time until an
issue is moved back is three days. It is unclear if this is an
administrative mistake or whether these issues need rework.

Another interesting observation we derived from the mined
process graphs is that, compared to bug-fixing processes,
implementing a feature appears to include a deterministic
path for deciding which issues may be rejected. For instance,
in team BISON, issues that end up being rejected primarily
originate from the middle inbox place, while other issues
follow one of the four paths to completion (done). Similarly,
in team JAGUAR, rejected issues are those primarily modified
by architects (indicated by the red transition color involved
with the topmost to do place) and those that originated from
the topmost inbox place. Although we did not investigate the
underlying reasons in depth, this observation suggests that there
may be early predictors in an issue’s lifecycle that determine
whether a feature will be completed or not. Specifically, features
with neither an assignee nor a fix version and features that
appear immediately in to do instead of inbox are more likely to
be rejected in both teams. In the future, TFS aims to explore
such cases to understand the causes and ideally provide better
automation to its developers.

V. DISCUSSION AND LEARNING

The technique we developed for mining processes from Jira
issues worked as intended, providing insights into activities that
are outside of typical version-control systems and helping TFS
understand its development processes better. In Section IV, we
exemplified insights we gained on the bug-fixing and feature-
development processes of the 24 teams. Particularly, we were
able to identify similarities and differences in terms of the
issue states, general categories (e.g., missing testing), concrete
workflows, and time it takes for issues to move on. As examples,
we found that one team relies solely on customer-reported bugs
while another team creates such reports themselves, or that
simple bugs are resolved faster by some teams. For TFS, it

has become clear that these differences have implications for
organizing and improving the bug-fixing processes. Our results
helped understand such deviations and motivated the need
for further analyses. For instance, a missing initial state may
simply be a consequence of the teams’ respective components
or because the developers of that team do not create issues for
their own bug reports. Moreover, TFS can unify and thereby
improve bug-fixing processes by analyzing why certain bugs
are resolved much faster, for which our technique identified
the starting points to look into.

Furthermore, we learned that in both bug-fixing processes
we exemplified, the product owner plays a crucial role in
determining when issues move to the next place. In contrast,
within the feature-development processes, the product owner
is mainly involved in backlog refinement when issues are
still in places related to inbox or to do. Later in the feature-
development process, engineers take over the administration.
For all examples, we filtered out between 5 and 10 % of all Jira
issues that did not conform to the general processes, indicating
that teams generally adhere to a standard way of working. Still,
they sometimes deviate from this way of working, and there are
quite some differences between the teams. Here, our technique
helps TFS understand who is involved in what steps, best
practices, and rare corner cases (which we omit, but which can
easily be added). Consequently, the graphs we create provide
a valuable basis for aligning processes and identifying corner
cases, which may require particular attention.

Regarding the time spent, in the bug-fixing processes, we
found that issues spend most of their time in a place corre-
sponding to to investigate or to do. The to do place is not an
active one, but work is taking place as part of the investigation
in the to investigate place. However, because there is no place
“investigating” in the graphs (because it is not in the Jira issues),
it is unclear how long an investigation takes place. Overall, in
progress takes up only a small portion of time in the entire
bug-fixing processes; most time is spent waiting for work to be
done, as indicated by thicker arrows going into and out of to do
places. The same applies to features where most time is spent
on to do rather than in progress, where active work takes place.
Interestingly, in terms of issue states, the feature-development
processes seem simpler and more deterministic compared to the
bug-fixing processes, despite the longer time spent on feature
issues. This simplicity may be due to the fact that features
typically have clear personnel assignments from the outside,
whereas bugs often require investigation to determine the most
suitable team member to work on them. Discussing these
insights with TFS, we learned that our technique can help TFS
understand potential bottlenecks, performance improvements,
and idle times in development processes, which can then be
further analyzed and potentially resolved.

Lastly, we compared the output of our technique to the output
produced by two established process-mining tools, Disco [10]
and ProM [36]. Disco uses a fuzzy miner, which creates a
single place per action, resulting in numerous places connected
to many other places because every action can happen while
a Jira issue is in any place. For instance, when an assignee

is added while the issue is in the status to do or in test, the
action leads to an equivalent place in the graph. ProM uses an
inductive miner, which contains a single starting and ending
place. This algorithm can display only one process at a time and
does not show self-transition loops, leading to many optional
actions in a chain in the resulting Petri Net. Compared to both
techniques, we followed a different idea and mine process
graphs with more details that yield different, novel insights.

We learned that our technique works as intended; it yields
novel insights compared to the related work and is perceived
as highly valuable by TFS. This underpins the value of
mining processes from Jira issues for developers and
organizations to understand and improve their development
as well as maintenance processes.

Learning Summary

VI. THREATS TO VALIDITY

Internal Validity. The reliability of our technique depends
on how reliably Jira issues are used within an organization or
developer community. For instance, the measured time may
vary if Jira issues are not updated promptly, the processes
may be incorrect if the labels are incorrect, and anything that
is not documented in Jira cannot be mined. Concretely, this
impacts our evaluation at TFS since some developer teams we
investigated updated issues only during their daily stand-up
meetings. However, this means that all times for those teams
are equally expanded, and we considered such properties when
analyzing the mined process graphs to mitigate the consequent
threat to the internal validity.

External Validity. We designed our technique for Jira issues
specifically and evaluated it in one company only. Consequently,
our findings may not be generalizable to developers in other
organizations or in open-source communities. To improve
the external validity and mitigate this threat, we conducted
a multi-case study. While all teams are part of the same
company, they work independently and, as we have shown,
they employ different processes. For this reason, we argue
that this threat is mitigated by conducting our evaluation with
multiple independent teams and developers.

VII. RELATED WORK

Traditionally, process discovery focuses on discovering relation-
ships between activities from sequences of activity executions,
where Petri Net places encode control-flow logic [1]. Discover-
ing object-centric Petri Nets [35] allows distinguishing different
data objects’ sequences of activity executions explicitly, while
places only model control-flow logic. Conversely, discovering
a set of inter-linked state-based models (transition systems)
over multiple objects from state-based event logs [37] allows
discovering places directly, but actions are discovered implicitly
and cannot be visually annotated. Furthermore, such a model
is difficult to understand and explore. In contrast, we explicitly
mine state and action information to construct a process graph
covering both aspects directly.

Various researchers have applied process mining to software
repositories [3], [7], [13], [19], [26], [29]. Process mining
involves retrieving business processes from event logs produced
by information systems. For instance, Poncin et al. [36]
proposed a framework for analyzing software repositories
using ProM, a tool commonly used in process mining. This
tool allows mining processes from multiple repositories and
combining events occurring in different places to create a single
event log. Marques et al. [18] used process mining on Jira
history logs with ProM and found that the α-, heuristic-, and
inductive-miners produced a spaghetti model or an incorrect
model. The authors settled on using a fuzzy miner, which
produced a simpler model that only included state transitions.
Most closely related to our study are the works by Gupta and
Sureka [12] as well as Juneja et al. [14], who consider issue-
trackers as an information source for their mining techniques.
There are some overlaps between these two works and ours that
improve our confidence in our technique and the validity of our
case study, for instance, regarding the identification of process
deviations in real-world software development. In contrast to
existing techniques, we build on a novel strategy for analyzing
and interpreting issues that yields more in-depth insights,
particularly with respect to the involved developer roles—which
have not been integrated into previous works. So, our technique
complements existing research on process mining. z

VIII. CONCLUSION

In this paper, we have proposed and evaluated a technique
for mining software development and maintenance processes
from Jira issues. Our technique iterates through all provided
issues and recovers processes based on the available states and
version histories. If such fields are used and maintained, our
technique can help understand the processes developers employ
to potentially improve them. We conducted a multi-case study in
which we used our technique to mine processes for 24 developer
teams at TFS, a large international company. The results show
several interesting differences in the processes employed and
highlight what activities the company may want to investigate
in the future. Upon inspecting and discussing these findings,
we received very positive feedback from TFS regarding the
usefulness of our technique. Consequently, we extend the state-
of-the-art with a complementary process-mining technique for
Jira issues that can deliver novel insights and advances upon
the related work.

In the future, we aim to propose techniques for automatically
analyzing and comparing the process graphs we mined. For
instance, it can be helpful for developers to have highlights for
major differences, bottlenecks, or rare deviations. Additionally,
we plan to extend our technique by considering more Jira fields
to add further information to the graphs and by developing inter-
active visualizations. This aligns with the need to quality-check
the Jira issues used by our technique, for instance, to deal with
missing values or to ensure that the provided data is correct.

REFERENCES

[1] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated Discovery of Process

Models from Event Logs: Review and Benchmark,” IEEE Transactions
on Knowledge and Data Engineering, vol. 31, no. 4, pp. 686–705, 2019.

[2] H. Balci and U. Dogrusoz, “fCoSE: A Fast Compound Graph Layout
Algorithm with Constraint Support,” IEEE Transactions on Visualization
and Computer Graphics, vol. 28, no. 12, pp. 4582–4593, 2021.

[3] J. Caldeira and F. Brito e Abreu, “Software Development Process Mining:
Discovery, Conformance Checking and Enhancement,” in International
Conference on the Quality of Information and Communications Technol-
ogy (QUATIC). IEEE, 2016, pp. 254–259.

[4] S. Cha, R. N. Taylor, and K. Kang, Eds., Handbook of Software
Engineering. Springer, 2019.

[5] B. Coremans, A. L. Klomp, S. A. Rukmono, J. Krüger, D. Fahland, and
M. R. V. Chaudron, “Process Mined from Jira Issues at a Large Company,”
2023. [Online]. Available: https://doi.org/10.5281/zenodo.8275679

[6] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, “A Layout
Algorithm for Undirected Compound Graphs,” Information Sciences, vol.
179, no. 7, pp. 980–994, 2009.

[7] C. dos Santos Garcia, A. Meincheim, E. R. F. Junior, M. R. Dallagassa,
D. M. V. Sato, D. R. Carvalho, E. A. P. Santos, and E. E. Scalabrin,
“Process Mining Techniques and Applications – A Systematic Mapping
Study,” Expert Systems with Applications, vol. 133, pp. 260–295, 2019.

[8] A. Dresch, D. P. Lacerda, and J. A. V. Antunes Jr., Design Science
Research. Springer, 2015.

[9] A. Fuggetta and E. Di Nitto, “Software Process,” in Conference on the
Future of Software Engineering (FOSE). ACM, 2014, pp. 1–12.

[10] C. W. Günther and A. Rozinat, “Disco: Discover Your Processes,” in
International Conference on Business Process Management (BPM).
CEUR-WS.org, 2012, pp. 40–44.

[11] C. W. Günther and W. M. P. van der Aalst, “Fuzzy Mining – Adaptive
Process Simplification Based on Multi-Perspective Metrics,” in Interna-
tional Conference on Business Process Management (BPM). Springer,
2007, pp. 328–343.

[12] M. Gupta and A. Sureka, “Process Cube for Software Defect Resolution,”
in Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2014,
pp. 239–246.

[13] S. Jaqueline Urrea-Contreras, B. L. Flores-Rios, M. Angélica Astorga-
Vargas, and J. E. Ibarra-Esquer, “Process Mining Perspectives in Software
Engineering: A Systematic Literature Review,” in Mexican International
Conference on Computer Science (ENC), 2021, pp. 1–8.

[14] P. Juneja, D. Kundra, and A. Sureka, “Anvaya: An Algorithm and
Case-Study on Improving the Goodness of Software Process Models
Generated by Mining Event-Log Data in Issue Tracking Systems,” in
Annual Computer Software and Applications Conference (COMPSAC).
IEEE, 2016, pp. 53–62.

[15] J. Klünder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende,
R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer, M. F. Genero
Bocco, S. Küpper, S. A. Licorish, G. López, F. McCaffery, Ö. Özcan
Top, C. R. Prause, R. Prikladnicki, E. Tüzün, D. Pfahl, K. Schneider, and
S. G. MacDonell, “Catching up with Method and Process Practice: An
Industry-Informed Baseline for Researchers,” in International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP). IEEE, 2019, pp. 255–264.

[16] J. Krüger, W. Mahmood, and T. Berger, “Promote-pl: A Round-Trip
Engineering Process Model for Adopting and Evolving Product Lines,”
in International Systems and Software Product Line Conference (SPLC).
ACM, 2020, pp. 2:1–12.

[17] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, and T. Berger,
“Where is My Feature and What is it About? A Case Study on Recovering
Feature Facets,” Journal of Systems and Software, vol. 152, pp. 239–253,
2019.

[18] R. Marques, M. Mira da Silva, and D. R. Ferreira, “Assessing Agile
Software Development Processes with Process Mining: A Case Study,”
in Conference on Business Informatics (CBI), 2018, pp. 109–118.

[19] C. Mayr-Dorn, J. Tuder, and A. Egyed, “Process Inspection Support:
An Industrial Case Study,” in International Conference on Software and
Systems Process (ICSSP). ACM, 2020, pp. 81–90.

[20] B. Meyer, Agile! Springer, 2014.
[21] L. Montgomery, C. Lüders, and W. Maalej, “An Alternative Issue

Tracking Dataset of Public Jira Repositories,” in International Coference
on Mining Software Repositories (MSR). ACM, 2022, pp. 73–77.

[22] M. Mortada, H. M. Ayas, and R. Hebig, “Why do Software Teams Deviate
from Scrum? Reasons and Implications,” in International Conference on
Software and Systems Process (ICSSP). ACM, 2020, pp. 71–80.

https://doi.org/10.5281/zenodo.8275679

[23] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and
R. Tonelli, “The JIRA Repository Dataset: Understanding Social Aspects
of Software Development,” in International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE). ACM,
2015, pp. 1:1–4.

[24] M. Ortu, G. Destefanis, M. Kassab, and M. Marchesi, “Measuring and
Understanding the Effectiveness of JIRA Developers Communities,”
in International Workshop on Emerging Trends in Software Metrics
(WETSoM). IEEE, 2015, pp. 3–10.

[25] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering. Springer, 2005.

[26] W. Poncin, A. Serebrenik, and M. van den Brand, “Process Mining Soft-
ware Repositories,” in European Conference on Software Maintenance
and Reengineering (CSMR). IEEE, 2011, pp. 5–13.

[27] N. Prenner, C. Unger-Windeler, and K. Schneider, “How are Hybrid
Development Approaches Organized? - A Systematic Literature Review,”
in International Conference on Software and Systems Process (ICSSP).
ACM, 2020, pp. 145–154.

[28] N. Prenner, C. Unger-Windeler, and K. Schneider, “Goals and Challenges
in Hybrid Software Development Approaches,” Journal of Software:
Evolution and Process, vol. 33, no. 11, pp. e2382:1–25, 2021.

[29] V. Rubin, C. W. Günther, W. M. P. van der Aalst, E. Kindler, B. F.
van Dongen, and W. Schäfer, “Process Mining Framework for Software
Processes,” in International Conference on the Software Process (ICSP).
Springer, 2007, pp. 169–181.

[30] M.-A. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou, “The
Who, What, How of Software Engineering Research: A Socio-Technical

Framework,” Empirical Software Engineering, vol. 25, no. 5, pp. 4097–
4129, 2020.

[31] C. Sürücü, B. Song, J. Krüger, G. Saake, and T. Leich, “Establishing Key
Performance Indicators for Measuring Software-Development Processes
at a Large Organization,” in Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2020, pp. 1331–1341.

[32] ——, “Using Key Performance Indicators to Compare Software-
Development Processes,” in Software Engineering (SE). GI, 2021,
pp. 105–106.

[33] W. M. P. van der Aalst and C. Stahl, “Modeling Business Processes – A
Petri Net-Oriented Approach,” Master’s thesis, Eindhoven University of
Technology, 2011.

[34] W. M. P. van der Aalst, Process Mining: Data Science in Action. Springer,
2016.

[35] W. M. P. van der Aalst and A. Berti, “Discovering Object-Centric Petri
Nets,” Fundamenta Informaticae, vol. 175, no. 1-4, pp. 1–40, 2020.

[36] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M.
Weijters, and W. M. P. van der Aalst, “The ProM Framework: A New
Era in Process Mining Tool Support,” in International Conference on
Application and Theory of Petri Nets (ICATPN). Springer, 2005, pp.
444–454.

[37] M. L. van Eck, N. Sidorova, and W. M. P. van der Aalst, “Guided
Interaction Exploration and Performance Analysis in Artifact-Centric
Process Models,” Business & Information Systems Engineering, vol. 61,
no. 6, pp. 649–663, 2019.

[38] R. K. Yin, Case Study Research and Applications: Design and Methods.
Sage, 2018.

