
VisFork: Towards a Toolsuite for Visualizing Fork Ecosystems

Siyue Chena, Loek Cleophasa,b, Sandro Schulzec, Jacob Krügera,∗

aEindhoven University of Technology, The Netherlands
bStellenbosch University, Republic of South Africa
cAnhalt University of Applied Sciences, Germany

Abstract

In our previous work, we have developed and tested different visualizations that help analyze
fork ecosystems. Our goal is to contribute analyses and tools that support developers as well
as researchers in obtaining a better understanding of what happens within such ecosystems.
In this article, we focus on the tool implementation of our most recent visualizations, which
can help users to better understand the relations between and activities within forks. Since
fork ecosystems are widely used in practice and well established research subjects, we hope
that our tooling constitutes a helpful means for other researchers, too.

Keywords: Fork Ecosystems, Software Repositories, Visualizations, Variant-Rich Systems,
Software Evolution

Metadata

code metadata description

Current code version v1
Permanent link to code/repository used for this code version https://github.com/chensiyue98/visfork
Permanent link to Reproducible Capsule https://zenodo.org/records/10462694
Legal Code License MIT
Code versioning system used Git
Software code languages, tools, and services used JavaScript, HTML, GitHub API, GitHub
Compilation requirements, operating environments and dependencies Node.js, Next.js, Vercel
If available, link to developer documentation/manual https://github.com/chensiyue98/visfork/blob/main/

README.md
Support email for questions j.kruger@tue.nl

1. Motivation and Significance

Forking allows developers to copy a repository and work on that independent copy
without impacting the original repository [7, 8]. Over time, forking has become widely

∗Corresponding Author
Email addresses: l.g.w.a.cleophas@tue.nl (Loek Cleophas), sandro.schulze@hs-anhalt.de

(Sandro Schulze), j.kruger@tue.nl (Jacob Krüger)

Preprint submitted to Science of Computer Programming November 12, 2024

https://github.com/chensiyue98/visfork
https://zenodo.org/records/10462694
https://github.com/chensiyue98/visfork/blob/main/README.md
https://github.com/chensiyue98/visfork/blob/main/README.md
j.kruger@tue.nl


static site generator
(Next.js)

build process

VisFork skeleton &
example data website

hosting

runtime

input

user

server
(Vercel) GitHub API

query

rendering

delivery

construct

Figure 1: Structural overview of VisFork.

adopted and large fork ecosystems have emerged in industry and open-source develop-
ment [10, 11, 12, 13, 18, 22]. While facilitating collaborative software development, forking
challenges developers as well as researchers in keeping an overview of large fork ecosys-
tems, such as the Linux Kernel (49,400 forks) or the Marlin 3D printer firmware (18,500
forks) [11, 12, 13, 15, 18, 20]. Due to their practical relevance, fork ecosystems have be-
come a primary research subject with researchers working on various topics like identifying
redundant or overlooked contributions [2, 6, 9, 15, 16, 21, 22]. GitHub has also introduced
a Network Graph view that presents commits in the order of submission time. However, a
graph of commits may not be expressive of the changes that occurred within a fork, since
commits can be submitted with unreliable descriptions and can contain tangled or indepen-
dent changes [1].

In our recent work [3, 4, 14], we have analyzed and proposed different visualizations
aiming to support developers and researchers in understanding as well as comparing forks
in ecosystems. Most prominently, we have designed and tested six visualizations in VisFork
that we derived from 237 comments of GitHub developers on how to improve the GitHub
Network Graph [4]. While subject to future improvements, we want to contribute this first
prototype of our toolsuite VisFork to enable other researchers to use and extend it. To the
best of our knowledge, we are the first to contribute such a reusable and extendable toolsuite,
supporting researchers with visualizations to explore phenomena in large real-world systems.
For instance, our user study with ten GitHub developers and seven graduate students [4]
indicated that they already perceived most visualizations as helpful to tackle questions like:
(i) How did this fork evolve and how is it related to other forks? (ii) Which forks are still
actively maintained? (iii) What (types of) work has been done within a fork? Answering
such questions is helpful for researchers to filter interesting forks and tackle novel research
questions, thereby supporting a very active research area.

2. Software description and functionalities

Currently, VisFork works as a static website generator, following the structure we display
in Figure 1. In the following, we provide a brief overview of VisFork before summarizing its
two core functionalities: data retrieval and visualization.

General Overview. We decided to build on web technologies to have a smoother inte-
gration with GitHub, particularly making use of GitHub’s robust Application Programming
Interfaces (APIs)—including Representational State Transfer (REST) and GraphQL. For

2



our current prototype, we use the REST API. Additionally, web-based tools are accessible
from any device with a web browser, without the need for specialized software installations.
This ensures that our visualization tool can be accessed by a broad audience, regardless
of their device or operating system. To implement our visualizations, we use D3.js.1 We
selected this library because our comparative analysis [3] of different tools has shown that it
is most helpful when combining different visualizations. For developing the VisFork website,
we chose Next.js2 because this framework is renowned for its optimized performance. Using
its support for Static Site Generation (SSG), we generate the HTML at build time, meaning
the content is ready to be served to users as soon as they request it. This results in faster
page load times, as there is no need to wait for server-side computations at runtime. To
deal with dynamic data when querying GitHub’s API on the user side, we utilize Client-Side
Rendering (CSR) on the user query. So, data retrieving and visualization rendering are done
on the user’s browser, saving the cost of communicating with a backend system. By combin-
ing SSG and CSR, we can ensure that the bulk of the application is pre-rendered and served
quickly, while dynamic data interactions remain fluid and responsive. This hybrid approach
helps us to build fast initial page loads and interactive and real-time data visualization.

Data Retrieval and Processing. To query data, a user has to set up the GitHub autho-
rization using the provided token. Then, VisFork fetches a specified repository’s metadata,
for which the number of forks to fetch and the sort order can be customized. For each fork,
we fetch its branches and the commits of each branch within a specified date range. Please
note that duplicate commits can occur in case the same commit is part of multiple branches.

Data Visualizations. We used D3.js as follows to implement visualizations:

Data Transformation: We mold the data fetched from GitHub’s APIs into a D3-friendly
format.

Crafting SVG Elements: We employ D3.js to generate SVG elements, such as nodes in
a network graph or bars in a histogram.

Data Binding: We associate our refined data with the SVG elements, translating data
points into visual representations.

User Interaction: We define specific responses to user actions, such as mouse clicks or
hovers, enriching the user’s engagement with the data.

Following the same process, other researchers can extend VisFork with visualizations based
on their own requirements. Currently, VisFork supports the visualizations we summarize in
the next section and display in Figure 2.

1https://d3js.org
2https://nextjs.org

3

https://d3js.org
https://nextjs.org


3. Illustrative examples

In Figure 2, we provide an overview of the website generated by VisFork and its individ-
ual visualizations. We have used this small example as sample data for our previous user
study [4]. Overall, we currently support six visualizations:

1○ A date range slider that (1) provides a general overview of development activity in a
fork ecosystem and (2) allows users to select what data to look into in more detail.

2○ A commit timeline as a well-known visualization of commits, forks, and branches in
an ecosystem. We have also developed a merged view, in which not all commits are
displayed, but only those with deviations (i.e., forking, branching, merging). Again,
the user can select those commits which are most relevant to them for the following
visualizations. Note that the basic commit timeline is essentially the same visualization
as GitHub’s Network Graph, while all other visualizations are extensions.

3○ A commit detail list, which is a tabular overview of the selected commits and their
properties.

4○ A word cloud that summarizes the most frequent terms occurring in the selected
commits’ messages.

5○ A commit classification tab that uses keyword matching to assign each commit into
one of the maintenance activities defined by Swanson [19] and visualizes these via a
Sankey diagram.

6○ A collaboration network history tab, which displays an evolving graph that illustrates
which developers contribute to what forks over time through an animation.

For users who are unfamiliar with VisFork, we have designed an introductory tour that pops
out when a user visits the website for the first time.

4. Impact

To the best of our knowledge, VisFork is the first attempt at systematizing the devel-
opment of visualizations for fork ecosystems. We have conducted a user study [4] with
ten GitHub developers and seven graduate students who were positive about our prototype
compared to GitHub Network Graph, and provided critical feedback for improving it as
well as individual visualizations. The participants were invited to conduct certain tasks and
freely explore VisFork on any repositories of their interest. Subsequently, the participants
completed an anonymous survey. The overall feedback from GitHub community members
was positive, with several features appreciated, such as commit history and collaboration
network history. We also received criticisms regarding certain scenarios, such as rule-based
commit classifications [5], which can be improved by more advanced classification algorithms
like natural-language processing with transfer learning [17]. Due to the positive feedback
from the survey, we hope that we can expand on VisFork to also transfer it into a plugin

4



Figure 2: Overview screenshot from our previous work [4] of VisFork for a smaller, real-world fork ecosystem
(author names are anonymized): 1○ date range slider; 2○ full commit timeline; 3○ commit detail list; 4○
word cloud; 5○ commit classification tab; and 6○ collaboration network history tab.

for GitHub and other social-coding platforms. At the moment, VisFork’s visualizations are
helpful for researchers to obtain a first understanding of a fork ecosystem to design their
research. In particular, VisFork can facilitate existing research on fork ecosystems, such
as identifying activity, stale forks, redundant work, code transplantation, bug propagation,
or community interactions. These visualizations can also guide the development of new
research directions, for instance, on software visualizations and uncovering reuse potential
within fork ecosystems. So, we hope that sharing this initial and platform-independent
prototype of visualizations can help other researchers working in these directions. We aim
to extend and refine VisFork in the future with new functionalities and visualizations to
develop it into a complete toolsuite.

5



5. Conclusions

In this article, we have detailed the implementation of VisFork, a first toolsuite aimed
at providing visualizations for supporting developers and researchers in obtaining a better
overview of fork ecosystems. VisFork has been perceived positively in a user evaluation [4].
However, our participants also noted limitations of the current visualizations and technical
improvements we aim to tackle in the future:

1. It shows only direct forks of the original repository, but not forks of these forks.

2. It needs more elaborate visualizations for the relationships between forks and branches.

3. It does not yet allow to filter or search specific forks, making it somewhat difficult to
navigate through large networks.

4. It does not provide a view to distinguish actively maintained forks from stale or aban-
doned ones, yet.

Besides improving VisFork along these dimensions, refining it with more visualizations and
improving its performance are key. Furthermore, we need more user studies to evaluate the
usefulness of VisFork and its visualizations. To this end we see the integration into social-
coding platforms via plugins as an important engineering challenge to make VisFork more
usable.

Acknowledgements

We would like to thank everyone who has supported our research, for instance, by testing
our prototypes or participating in our user studies.

References

[1] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. Helping Developers Help Them-
selves: Automatic Decomposition of Code Review Changesets. In International Conference on Software
Engineering (ICSE), pages 134–144. IEEE, 2015. doi: 10.1109/icse.2015.35.

[2] John Businge, Moses Openja, Sarah Nadi, and Thorsten Berger. Reuse and Maintenance Practices
among Divergent Forks in Three Software Ecosystems. Empirical Software Engineering, 27(2), 2022.
doi: 10.1007/s10664-021-10078-2.

[3] Siyue Chen, Loek Cleophas, and Jacob Krüger. A Comparison of Visualization Concepts and Tools
for Variant-Rich System Engineering. In International Systems and Software Product Line Conference
(SPLC), pages 153—-159. ACM, 2023. doi: 10.1145/3579027.3608986.

[4] Siyue Chen, Cleophas Loek, Sandro Schulze, and Jacob Krüger. Use the Forks, Look! Visualizations
for Exploring Fork Ecosystems. In International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 993–1004. IEEE, 2024. doi: 10.1109/SANER60148.2024.00107.

[5] Leshem Choshen and Idan Amit. ComSum: Commit Messages Summarization and Meaning Preserva-
tion. CoRR, 2021. URL https://doi.org/10.48550/arXiv.2108.10763.

[6] Anh N. Duc, Audris Mockus, Randy Hackbarth, and John Palframan. Forking and Coordination in
Multi-Platform Development. In International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 59:1–10. ACM, 2014. doi: 10.1145/2652524.2652546.

6

https://doi.org/10.48550/arXiv.2108.10763


[7] Neil A. Ernst, Steve M. Easterbrook, and John Mylopoulos. Code Forking in Open-Source Software:
A Requirements Perspective. CoRR, 2010. URL https://doi.org/10.48550/arXiv.1004.2889.

[8] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An Exploratory Study of the Pull-Based
Software Development Model. In International Conference on Software Engineering (ICSE), pages
345–355. ACM, 2014. doi: 10.1145/2568225.2568260.

[9] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen. Work Practices and
Challenges in Pull-Based Development: The Integrator’s Perspective. In International Conference on
Software Engineering (ICSE), pages 358–368. IEEE, 2015. doi: 10.1109/icse.2015.55.

[10] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela
Damian. The Promises and Perils of Mining GitHub. In International Working Conference on Mining
Software Repositories (MSR), pages 92–101. ACM, 2014. doi: 10.1145/2597073.2597074.

[11] Sebastian Krieter, Jacob Krüger, Thomas Leich, and Gunter Saake. VariantInc: Automatically Pruning
and Integrating Versioned Software Variants. In International Systems and Software Product Line
Conference (SPLC), pages 129–140. ACM, 2023. doi: 10.1145/3579027.3608984.

[12] Jacob Krüger and Thorsten Berger. An Empirical Analysis of the Costs of Clone- and Platform-
Oriented Software Reuse. In Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 432–444. ACM, 2020. doi: 10.1145/3368089.
3409684.

[13] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and Thorsten Berger. Where
is My Feature and What is it About? A Case Study on Recovering Feature Facets. Journal of Systems
and Software, 152:239–253, 2019. doi: 10.1016/j.jss.2019.01.057.

[14] Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake. DSDGen: Extracting
Documentation to Comprehend Fork Merges. In International Systems and Software Product Line
Conference (SPLC), pages 47–56. ACM, 2023. doi: 10.1145/3579028.3609015.

[15] Mukelabai Mukelabai, Christoph Derks, Jacob Krüger, and Thorsten Berger. To Share, or Not to
Share: Exploring Test-Case Reusability in Fork Ecosystems. In International Conference on Automated
Software Engineering (ASE). IEEE, 2023. doi: 10.1109/ASE56229.2023.00191.

[16] Poedjadevie K. Ramkisoen, John Businge, Brent van Bladel, Alexandre Decan, Serge Demeyer, Coen
De Roover, and Foutse Khomh. PaReco: Patched Clones and Missed Patches among the Divergent
Variants of a Software Family. In Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 2022. doi: 10.1145/3540250.3549112.

[17] Muhammad U. Sarwar, Sarim Zafar, Mohamed W. Mkaouer, Gursimran S. Walia, and Muhammad Z.
Malik. Multi-Label Classification of Commit Messages Using Transfer Learning. In International
Symposium on Software Reliability Engineering Workshops (ISSREW), pages 37–42. IEEE, 2020. doi:
10.1109/ISSREW51248.2020.00034.

[18] S, tefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. Forked and Integrated Variants in an
Open-Source Firmware Project. In International Conference on Software Maintenance and Evolution
(ICSME), pages 151–160. IEEE, 2015. doi: 10.1109/icsm.2015.7332461.

[19] E. Burton Swanson. The Dimensions of Maintenance. In International Conference on Software Engi-
neering (ICSE), pages 492–497. IEEE, 1976.

[20] Shurui Zhou. Improving Collaboration Efficiency in Fork-Based Development. In International Con-
ference on Automated Software Engineering (ASE), pages 1218–1221. IEEE, 2019. doi: 10.1109/ASE.
2019.00144.

[21] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the Fork: A Study of Inefficient and
Efficient Forking Practices in Social Coding. In Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 350–361. ACM, 2019.

[22] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. How Has Forking Changed in the Last 20
Years? A Study of Hard Forks on GitHub. In International Conference on Software Engineering
(ICSE), pages 445–456. ACM, 2020. doi: 10.1145/3377811.3380412.

7

https://doi.org/10.48550/arXiv.1004.2889

	Motivation and Significance
	Software description and functionalities
	Illustrative examples
	Impact
	Conclusions

