
A Comparison of Visualization Concepts and Tools for
Variant-Rich System Engineering

Siyue Chen
Eindhoven University of Technology

Eindhoven, The Netherlands
s.chen1@student.tue.nl

Loek Cleophas
Eindhoven University of Technology

Eindhoven, The Netherlands
Stellenbosch University

Stellenbosch, South Africa
l.g.w.a.cleophas@tue.nl

Jacob Krüger
Eindhoven University of Technology

Eindhoven, The Netherlands
j.kruger@tue.nl

ABSTRACT
Software product-line engineering is concerned with developing a
set of similar, yet customized, software systems that share a com-
mon codebase. To develop such a variant-rich system, various de-
velopment processes, techniques, and tools have been studied in
research and are used in practice. Specifically, to help developers
manage the complexity of developing large-scale variant-rich sys-
tems, researchers have proposed visualizations to visually present
different properties of such systems and their engineering—such as
feature models, configurations, the similarity of variants, or process
traces. Two recent mapping studies have systematically elicited the
state-of-the-art on such visualizations, but neither of them provides
a comparative analysis of the underlying visualization concepts
and tools. In this paper, we report a qualitative meta-analysis of the
64 papers that we primarily selected from these two mapping stud-
ies. Advancing on the previous studies, we compare the use cases,
pros, cons, and relations between visualization concepts and tools
used with respect to engineering variant-rich systems. Our results
provide insights—orthogonal to those from the mapping studies—
regarding the purposes for which visualization concepts are used
and the tools that are available to implement these concepts. The
overview we provide can help researchers as well as practitioners
decide to use specific established visualization concepts or design
new ones, and identify tools that can help them to implement these.

CCS CONCEPTS
• Software and its engineering → Software product lines;
•Human-centered computing→ Visualization techniques;
Visualization systems and tools.

KEYWORDS
software product line, variant-rich system, visualization techniques,
visualization systems and tools
ACM Reference Format:
Siyue Chen, Loek Cleophas, and Jacob Krüger. 2023. A Comparison of
Visualization Concepts and Tools for Variant-Rich System Engineering.
In 27th ACM International Systems and Software Product Line Conference -

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0091-0/23/08.
https://doi.org/10.1145/3579027.3608986

Volume A (SPLC ’23), August 28-September 1, 2023, Tokyo, Japan. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3579027.3608986

1 INTRODUCTION
Software product-line engineering provides means for engineering
a set of similar systems that build on a common codebase [4, 53, 82],
thereby establishing a variant-rich system (a.k.a. product family or
product line). Since most of today’s software systems have to exist
in various variants to account for individual customer requirements,
variant-rich systems are widely established in different domains,
such as automotive, aerospace, and embedded firmware [29, 51, 52,
55–58, 79, 91, 100, 103]. Typically, developers initiate a variant-rich
system via the clone-and-own method of copying and adapting
a system to new requirements (e.g., via forking on social-coding
platforms) and move to a fully integrated platform later on [21,
28, 49, 55, 86, 91]. An integrated platform requires more planning
and investment in advance [1, 13, 17, 50, 51, 89], for instance, to
set up the platform architecture, feature model [44, 75], variability
mechanism [14], pipelines for configuring and deriving variants [18,
97], as well as testing [24]. However, the benefits (e.g., quality
improvements, faster time-to-market) of a platform implemented
based on product-line engineering methods usually outweigh the
initial investments, which is why most organizations that develop a
variant-rich system adopt a platform at some point [13, 51, 89, 100].

Regardless of how they were developed or are organized, real-
world variant-rich systems (e.g., the Linux Kernel [94]) can become
very large, for instance, in terms of their features, variants, source
code, or the number of developers involved. Visualizations are key
to helping developers understand and manage the size, complexity,
as well as relations of such entities (e.g., feature dependencies, evo-
lution graphs, fork networks). A visualization can provide a clear
and intuitive representation of a certain part of a variant-rich sys-
tem and its properties. Two independent mapping studies [61, 68]
have been conducted recently to provide overviews of existing vi-
sualizations used in product-line engineering. Both focus on the
entities that are visualized and the types of diagrams used. How-
ever, neither one reports a comparative analysis of the use cases for
which the visualization concepts and respective tools are used. For
instance, Medeiros et al. [68] provide an overview of what diagrams
are used, what evolution scenarios [93] are covered, what benefits
are reported, or what users can interact how with a visualization.
In contrast, we are interested in what visualization concepts (e.g.,
diagrams) have been used for what reasons to visualize a certain
entity of engineering variant-rich systems (e.g., features, forks) and
the respective tools used. More specifically, we are not interested

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0001-7892-4818
https://orcid.org/0000-0002-7221-3676
https://orcid.org/0000-0002-0283-248X
https://doi.org/10.1145/3579027.3608986
https://doi.org/10.1145/3579027.3608986
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579027.3608986&domain=pdf&date_stamp=2023-08-28


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Siyue Chen, Loek Cleophas, and Jacob Krüger

in the evolution scenarios, but, for example, why different visual-
izations like trees, graphs, or logical gates are used to represent
feature dependencies. So, we aim to complement the two mapping
studies with orthogonal insights that are important for researchers
and practitioners to decide on using or designing visualizations for
engineering variant-rich systems.

In this paper, we present a conceptual comparison of the dif-
ferent visualization concepts proposed and used in the context of
engineering variant-rich systems. For this purpose, we performed a
meta-analysis of 64 papers from which we elicited the visualization
concepts, the visualized entities, the researchers’ underlying ideas,
the evaluations performed, and the tools used. We discuss pros and
cons of the underlying visualization concepts, relations, and tools,
providing examples of their application in research and practice.

More precisely, we contribute the following in this paper:
• We provide an overview of what visualization concepts have
been used for what entities in the context of engineering
variant-rich systems.

• We analyze what use cases researchers have aimed to support
using specific visualization concepts, as well as the tools they
used for this purpose.

• We discuss what visualization concepts have been used, and
what evidence for their usefulness has been reported.

• We share our analysis dataset withmore detailed descriptions
in a persistent open-access repository.1

Building on our contributions, researchers as well as practitioners
can more easily identify appropriate concepts and tools to support
their own use cases or to develop novel visualization ideas.

2 RELATEDWORK
There are two recent mapping studies on the various visualization
concepts that have been proposed for engineering variant-rich sys-
tems, which are the work most closely related to our own analysis.

Lopez-Herrejon et al. [61] have conducted a systematic map-
ping study on visualizations for software product-line engineering,
summarizing findings for 37 primary sources. They performed
their meta-analysis by gathering information on the visualization
techniques and providing a categorized overview of the findings.
Specifically, Lopez-Herrejon et al. have identified ten (types of) visu-
alization tools (cf. Table 3), which they briefly introduce. However,
the review does not explain and analyze what and why visualiza-
tion concepts and tools are used for specific visualizations. The
results also do not explain whether specific concepts or techniques
are more feasible for certain use cases or entities of engineering
variant-rich systems.

Medeiros et al. [68] report a systematic mapping study of 41 pri-
mary sources that propose visualizations for evolving variant-rich
systems. The authors conducted their study to tackle three primary
research questions that are structured around established evolution
scenarios [93]: what analyses are conducted, what visualizations
are displayed, and how mature are the techniques? Medeiros et al.
provide in-depth insights into individual visualizations, elicit what
entities of variant-rich systems engineering are visualized (e.g., fea-
tures, variants), what concepts (e.g., bar chart, tree-map, table) are
used, and that only 13 tools were publicly available. Unfortunately,

1https://doi.org/10.5281/zenodo.8069277

the analysis investigates only how often visualization concepts
and entities of engineering variant-rich systems have been consid-
ered, but does not investigate the relations between both. Moreover,
an overview of the underlying tools available for researchers and
practitioners is missing.

3 METHODOLOGY
In this section, we describe the methodology we employed for our
comparative meta-analysis.

3.1 Goal and Research Questions
With this study, we aimed to extend the findings of the twomapping
studies we described in Section 2 with orthogonal insights. In par-
ticular, we aimed to understand what visualization concepts have
been used for what entities of engineering variant-rich systems, and
what tools have been used for what reasons. For instance, neither
of the mapping studies has analyzed why feature models have not
only been visualized as typical trees, but also using concepts like
tables, bubble maps, or scatter charts. We are concerned with ex-
ploring such relations between visualization concepts and entities,
and with understanding what evidence exists that the visualizations
are helpful for developers.

To tackle this goal, we defined three research questions (RQs):
RQ1 What visualization concepts have been used for what entities?

Some visualization concepts are widely established for spe-
cific entities, for instances trees (concept) to display feature
models (entity) as diagrams. However, variant-rich systems
exhibit various entities with relationships, which is why
various visualization concepts have been proposed and com-
bined. We elicited such combinations to provide an overview
of the paths that have been explored.

RQ2 What are the ideas of using these visualizations?
Each visualization builds on an underlying idea for its spe-
cific use case. For instance, trees for feature models are the
de facto standard (idea) [75], but some researchers proposed
adding cone trees to provide a better visualization of how
multiple variant-rich systems are connected. Exploring the
underlying ideas of each visualization contributes to an un-
derstanding of what entities and relations the respective
researchers aimed to visualize.

RQ3 What is the evidence on the usefulness of these visualizations?
When building on existing or proposing new visualizations,
it is key to understand whether they actually help developers.
For instance, while 3D cones have been used for visualizing
feature models, their actual usefulness for developers has
not been empirically evaluated (no insights). We collected
an overview of which visualization concepts and underlying
ideas have proven to benefit developers.

RQ4 What tools have been used for implementing visualizations?
To develop a visualization, it is helpful to build on estab-
lished visualization tools. As an example, FeatureIDE [69] is
a widely established tool for visualizing feature models, but
extending it with new visualizations is quite cumbersome.
To support researchers and practitioners in designing new
visualizations, we provide an overview of the tools used in
previous work that they can build upon.

https://doi.org/10.5281/zenodo.8069277


A Comparison of Visualization Concepts and Tools for Variant-Rich System Engineering SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

These research questions were outside the scope of the twomapping
studies we build upon. Consequently, we argue that we contribute
orthogonal and valuable in-depth insights into visualizations for
engineering variant-rich systems.

3.2 Selecting Primary Sources
For our meta-study, we relied on the papers identified in the two sys-
tematic mapping studies by Lopez-Herrejon et al. [61] andMedeiros
et al. [68]. Both works conducted systematic searches for relevant
papers: Lopez-Herrejon et al. conducted an automated search on
ScienceDirect, IEEEXplore, the ACM Digital Library, and Springer-
Link, followed by a snowballing search. This resulted in 37 papers
published between 2007 and 2016. Medeiros et al. performed an
automated search on ScienceDirect, IEEEXplore, the ACM Digital
Library, Scopus, and the Wiley Online Library, also followed by
a snowballing search. They identified 41 papers that have been
published from 2006 until 2021. Overall, this constituted a total of
58 papers after removing the duplicates between the two studies.

As a cross check, particularly for more recent papers, we per-
formed a manual literature search through the 2016 to 2022 proceed-
ings of the International Conference on Visualisation (VIS), Inter-
national Working Conference on Software Visualisation (VISSOFT),
and the International Systems and Software Product Lines Confer-
ence (SPLC). This process led to six new papers [8, 37, 38, 63, 72, 73]
that we added to the previous ones, adding up to a total of 64 papers
that we considered for our analysis. During our manual search, we
selected any paper as relevant if it (i) has been published at the
research track and (ii) reports on a visualization for engineering
variant-rich systems. For this purpose, we first checked whether
we could decide based on the title, then we checked the abstract,
and if needed we read the full text of a paper. Since we investigated
three prominent conferences, all papers fulfilled the typical criteria
of being peer-reviewed and written in English.

3.3 Data Extraction
To answer our research questions, we extracted the following data
(besides typical bibliographic data):
RQ1 A list of keywords summarizing the entities that are visual-

ized (e.g., features, feature model, variants).
RQ1 A list of keywords describing the concepts used for visualiz-

ing (e.g., bar chart, tree, histograms).
RQ1 Short descriptions of each relation between entities and con-

cepts (i.e., short notes connecting one or more entities with
one or more concepts).

RQ2 The idea or use case for which each relation has been pro-
posed for a visualization (i.e., a short note for each relation,
such as “de facto standard of using trees for feature models”).

RQ3 Information on the evaluations that have been performed
(e.g., experiment with 10 students solving tasks).

RQ3 Any results of the evaluation reported in the paper (e.g.,
feedback, task-solving performance).

RQ4 A list of all tools used for implementing a visualization to-
gether with short notes on the pros and cons of these tools
reported in a paper.

Using this data, we were able to answer our research questions and
provide novel insights compared to the related work.

Table 1: Visualization concepts used in the primary sources.

Concept Sources Total

Bar chart [20–22, 54, 66, 71] 6
Bubble chart [60, 74] 2
Colored code [15, 45, 71] 3
Concept lattice [39, 59, 78] 3
Cone tree [98] 1
Feature blueprint [99] 1
Graph [2, 3, 5, 15, 16, 25, 32, 34, 35, 40, 62, 67, 72,

73, 80, 81, 84, 87, 95, 104]
20

Heatmap [8, 26, 60, 78] 4
Histogram [92] 1
Levelized structure map [46] 1
Line chart [25] 1
Logic gate [31] 1
Sankey diagram [70, 71, 81] 3
Scatter chart [12] 1
Survival chart [101] 1
Table/Matrix [2, 7, 15, 25, 30, 36, 47, 60, 74, 83, 84, 88] 12
Tree [3, 6, 8, 10, 11, 27, 31, 37, 38, 41–43, 63, 76,

90, 92, 96]
17

Treemap [40, 60, 70, 72, 73] 5
Word cloud [19, 65] 2

3.4 Data Analysis
To ensure consistency, the first author extracted all data by reading
each paper in detail. They employed an open-coding process, mark-
ing relevant information in the full texts and extracting them into a
spreadsheet. The other authors of this paper verified the extracted
data during discussions, data analyses, based on their knowledge of
these papers, and by picking individual papers for detailed checks.
We then analyzed our data qualitatively, using open-card-sorting
to derive common themes and terminologies from it.

4 RESULTS
We identified 19 visualization concepts from the primary sources.
In Table 1, we display the distribution of what visualization concept
has been used in the primary sources; and in Figure 1, we display
the entities of engineering a variant-rich system that have been vi-
sualized using these concepts (RQ1). To understand the selection of
visualization concepts used in research, we explored the reasoning
behind these concepts (RQ2). Next, we provide a brief overview of
the concepts, their underlying ideas, the existing evidence (RQ3),
and the tools used (RQ4)—with more detailed descriptions in our
dataset,1 answering our research questions in combination to avoid
redundancy and improve the comprehensibility of this section.

Answering RQ1: Visualization Concepts Used. We identified 19 visu-
alization concepts that have been used for eight different entities.
While trees (17) and graphs (20) are the most commonly used visu-
alization concepts, due to the hierarchical organization of variant-
rich systems, there are a variety of other concepts that have been
proposed to more effectively communicate data and insights. For hi-
erarchical data like feature models and software artifacts, trees and
treemaps are commonly used. Chronological data, such as changes
in the lines of code of a feature over time, are typically visualized
using tables, matrices, or survival charts. Categorized data, such as
features, have been visualized using various concepts. In contrast,



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Siyue Chen, Loek Cleophas, and Jacob Krüger

Logic gate: 1 Feature dependencies: 6

Line chart: 1

Features: 25

Levelized structure map: 1

Software artifacts: 20

Survival chart: 1

Scatter chart: 3

Word cloud: 2 SPL configurations: 11

Bar chart: 8

Product variants: 16
Bubble chart: 3

Colored code: 3 Code: 5
Concept lattice: 3 Product requirements: 2

Cone tree: 1
Feature model: 13

Feature blueprint: 1

Graph: 24

Heatmap: 5

Histogram: 1

Sankey diagram: 3

Table/Matrix: 13

Tree: 20

Treemap: 4

Figure 1: Visualization concepts (left) and the entities they vi-
sualize (right). The numbers indicate how often we identified
each concept or entity. Note that these numbers do not pre-
cisely match those in Table 1, because some concepts/entities
are used multiple times in one paper, for different purposes.

word clouds and heatmaps are rather specific and can indicate the
importance or relevance of a particular topic or question.
Answering RQ2: Ideas of Visualizations. Some visualization concepts
used for engineering variant-rich systems, such as trees, graphs,
tables, or matrices, are generally used for visualizing feature models
and their derivatives (features and feature dependencies). In con-
trast, other visualization concepts have an underlying idea specific
to their use case, such as colored code, word clouds, and concept lat-
tices. The remaining visualization concepts have been explored for
visualizing various entities of a variant-rich system, such as the over-
all structure, code complexity, or importance of features—typically
associated with each visualization concept’s ability to provide a
unique perspective on the data. By using or combining different
visualization concepts, entities within a variant-rich system can be
associated with each other, which provides an understanding of
the relationships or patterns in the system.
Answering RQ3: Evidence on Visualizations. Various evaluation
methods have been used in the primary sources, showing evidence
on the benefits of the visualization concepts covered. In Table 2, we
display the distribution of the four evaluationmethods we identified
from the primary sources. While field experiments are a common

Table 2: Evaluation methods used in the primary sources.

Evaluation Sources Total

Field experiment [5–8, 10, 11, 20, 22, 26, 31, 32, 36, 38–40, 42,
43, 47, 54, 59, 63, 65–67, 72, 73, 76, 78, 80, 81,
83, 88, 98, 99]

34

Judgement study [2, 71, 74] 3
Experimental simulation [41, 95] 2
Field study [101] 1

Table 3: Visualization tools used in our selected primary
sources. The tools that have previously been identified by
Lopez-Herrejon et al. [61] are asterisked (*).

Tool Sources Total

* Adhoc [7, 8, 12, 15, 20–22, 26, 27, 31, 39, 46, 62, 64,
87, 90, 92, 98, 101, 104]

20

* Eclipse EMF-GEF [3, 10, 11, 25, 30, 32, 34, 35, 45, 66, 76, 80, 83,
84, 88]

15

* Prefuse [6, 41, 81] 3
* D3.js [19, 40, 47, 60, 95] 5
* Graphviz [42] 1
* CCVisu [5] 1
* Google Charts [74] 1
* ConExp [59] 1
* Moose [99] 1
* Processing [67] 1

FeatureIDE [2, 70] 2
Babylon.js [72, 73] 2

method used in visualization research, other methods, such as judg-
ment studies, experimental simulations, and field studies, have also
been employed to evaluate visualizations for variant-rich systems.
From such evaluations, we found that a substantial body of evidence
supports the notion that trees are an effective means for visualizing
feature models, while graphs have been shown to be effective in
visualizing features and software artifacts. Additionally, tables and
matrices have been found to be effective in visualizing features.
Other visualization concepts have, to some extent, been demon-
strated to be effective in visualizing some use cases. However, the
level of evidence supporting their effectiveness varies, and further
research is needed to fully investigate their potential in different
contexts. Finally, the 24 primary sources that we do not reference do
not include any type of evaluation of their proposed visualizations,
indicating a gap in the research and a need to further investigate
the effectiveness of these visualizations.
Answering RQ4: Visualization Tools Used. We found that the pri-
mary sources have used 12 different visualization tools: Eclipse
GEF-EMF [85], Prefuse [33], D3.js [105], Graphviz [23], CCVisu [9],
Google Charts,2 ConExp [102], Moose [77], Processing3, FeatureIDE
[48, 69], Babylon.js,4 and Adhoc tools) to implement their visualiza-
tion concepts, even in the case of implementing the same concepts.
In Table 3, we show what visualization tool has been used by which
primary sources. Primary sources we do not list have introduced
some visualization, but did not implement it within any tools. To
figure out whether the choice of visualization tools is related to
their supported capabilities, we analyzed the visualization concepts
supported by each tool (details can be found in our dataset1). We
define three levels of compatibility as follows:
Implemented. The visualization concept has been implemented

using the visualization tool as reported in a primary source.
Supported. The visualization concept has not been implemented

using the visualization tool as reported in the primary sources,
but the concept is officially supported by the tool.

2https://developers.google.com/chart
3https://processing.org
4https://babylonjs.com

https://developers.google.com/chart
https://processing.org
https://babylonjs.com


A Comparison of Visualization Concepts and Tools for Variant-Rich System Engineering SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Not supported. The visualization tool is not designed to imple-
ment the visualization concept.

We gathered this overview by inspecting and testing each tool, as
well as reading its documentation. To understand why researchers
opted for a particular visualization tool over others, we analyzed
the advantages and limitations of these tools in the context of engi-
neering variant-rich systems, which we detail in the following. Note
that “visualized entities” refers to the entities our primary sources
have visualized with a tool, not the tools’ general capabilities.

We found that some of the visualization tools are only designed
for specific purposes: Graphviz and CCVisu are used to abstract
graphs from structural information, while ConExp is specialized
for formal concept analysis. Meanwhile, Prefuse and D3.js provide
support for most visualization concepts, but have not been adopted
to their full extent in the primary sources. We also note that al-
though most of the primary sources do not explicitly point out
their motivation for choosing a visualization tool, researchers tend
to select the tool developed or supported by their institution (e.g.,
CCVisu [5] and Moose [99]). Thus, one factor that affects the choice
of visualization tools could be familiarity with tools and languages.
In our dataset,1 we further provide an overview of the key specifi-
cations of the tools to help researchers and practitioners select the
most suitable one for their context.

5 DISCUSSION
Visualizations play a crucial role in understanding variant-rich sys-
tems and communicating their complexities effectively. For RQ1,
we explored what and how visualization concepts have been used
for different entities and found that, while some visualization con-
cepts (e.g., trees, graphs) are commonly used, there are also entities
for which other visualization concepts have been explored. We con-
clude that the choice of visualization concepts should be tailored
to the specific data and perspectives being communicated.

For RQ2, we analyzed the reasons for using a visualization con-
cept for an entity. Some visualization concepts are generally used
for visualizing specific entities in variant-rich systems, such as trees
and graphs for feature models and their derivatives due to the hier-
archical structure. Other concepts have an underlying idea specific
to their use case, such as colored code, word clouds, and concept lat-
tices. Our findings highlight the importance of selecting a suitable
visualization concept or combination of techniques to communicate
effectively, as well as of reflecting on standard visualizations and
potential improvements.

For RQ3, we examined the evaluation of each primary source.
We found that there is reliable empirical evidence supporting the ef-
fectiveness of several visualization techniques used for variant-rich
systems, such as trees, graphs, and tables/matrices for feature mod-
els and their derivatives. However, the level of evidence supporting
the effectiveness of other visualization concepts varies, and most
primary sources do not include an evaluation study. This clearly
indicates the need for further research and systematic evaluations.

For RQ4, we explored what tools the visualizations were imple-
mented with. Some tools like Eclipse-based platforms are compati-
ble with the development environment, enabling more advanced
operations, such as code interactions and configuring. Researchers
should carefully consider the available visualization tools and their

specifications when selecting the most suitable tool for their re-
quirements and ideas. We contribute an overview of the key speci-
fications of each visualization tool, which can help researchers in
selecting the most suitable tool for their requirements.

Our findings further reveal the heterogeneity of visualization
tools regarding different use cases. Tools, according to their capa-
bilities and limitations, handle tasks with different visualization
techniques and integrate with workflows at different levels. In gen-
eral, the selection of visualization tools is determined by the task
domain, data type, and skills or experience of the user. Considering
that skills and experience vary among users and we cannot take
that into account, we assume that familiarity with the tools and
programming languages does not impact a choice. Under that as-
sumption, the following high-level considerations can help select
proper tools for a visualization:

• If the visualizationmust be embedded into a development work-
flow, such as interacting with the source code or integrat-
ing click-and-configure experience, Eclipse EMF-GEF, Fea-
tureIDE, Prefuse, and Adhoc tools seem most useful. Eclipse
EMF-GEF and FeatureIDE work well when the variant-rich
system is modeled and built with Eclipse; Prefuse can be in-
tegrated with Java projects; and Adhoc tools may be a better
option to fit specific development environments.

• If a formal concept analysis is needed, ConExp is a proper
choice specifically designed for this use case.

• If software analyses on a complex variant-rich system are
needed, Moose can be an option for its capability to handle
large-scale systems.

• If feature-model visualizations shall be explored with more
flexibility, such as combining several visualization concepts
in a view or applying tweaks on an existing visualization,
the latest open-source visualization tools with proper docu-
mentation and community support, such as D3.js and Fea-
tureIDE, should be considered. Using a 3D-rendering engine
like Babylon.js allows to expand visualization concepts into
a 3D shape, enabling a more comprehensive perspective.

• If little programming knowledge is a requirement, Google
Charts or encapsulated D3.js components seem most useful.

Overall, we hope that our results and these conclusions help re-
searchers as well as practitioners when designing novel techniques
for engineering variant-rich systems that require visualizations.

6 THREATS TO VALIDITY
Selection bias is a potential threat to the validity of our study. We
based our selection on two recent mapping studies and a manual
search in the proceedings of three conferences, but we may still
have missed relevant primary sources. Consequently, our study’s
findings may not represent the entire universe of research on visu-
alizations for variant-rich system engineering. Still, our findings
provide a valuable and detailed overview of the state-of-the-art.

Publication bias may have impacted our findings. We can only
rely on published papers, which may not accurately represent the
current state-of-the-art. Unpublished research, open-source tools,
or industry practices may also be relevant and should be included in
future research. Still, we capture a large number of primary sources
and provide helpful insights for researchers and practitioners.



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Siyue Chen, Loek Cleophas, and Jacob Krüger

7 CONCLUSION
Visualizations are a powerful tool for understanding and analyz-
ing software-engineering data, also in the context of variant-rich
systems. We have examined 64 papers that have proposed visu-
alizations for variant-rich systems and, building on 12 different
(types of) tools: Eclipse EMF-GEF, Prefuse, D3.js, Graphviz, CCVisu,
Google Charts, ConExp, Moose, Processing, FeatureIDE, Babylon.js,
and Adhoc tools. To provide a detailed overview, we compared the
visualization concepts used for the entities of variant-rich system
engineering, the underlying ideas, the existing evidence on their
usefulness, and the tools used. Our findings can help researchers
and practitioners to understand what visualizations may be most
useful to reuse, and to identify opportunities for exploring novel
ones. We further provide help when selecting underlying tools for
implementing a visualization. However, we want to emphasize that
more systematic evaluations and comparisons are needed to bet-
ter understand which visualization concepts are better suited for
what entities of variant-rich system engineering. In future work,
we aim to build on our findings to develop novel visualizations for
under-explored concepts.

REFERENCES
[1] Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019.

Migrating the Android Apo-Games into an Annotation-Based Software Product
Line. In SPLC. ACM.

[2] Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.
2017. FLOrIDA: Feature LOcatIon DAshboard for Extracting and Visualizing
Feature Traces. In VaMoS.

[3] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira, Jean-Claude Royer,
Andreas Rummler, and André Sousa. 2010. A Model-Driven Traceability Frame-
work for Software Product Lines. International Journal on Software & Systems
Modeling 9 (2010).

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Sven Apel and Dirk Beyer. 2011. Feature Cohesion in Software Product Lines:
An Exploratory Study. In ICSE. IEEE.

[6] Mohsen Asadi, Samaneh Soltani, Dragan Gasevic, Marek Hatala, and Ebrahim
Bagheri. 2014. Toward Automated FeatureModel Configurationwith Optimizing
Non-Functional Requirements. Information and Software Technology 56, 9 (2014).

[7] Sana Ben Nasr, Guillaume Bécan, Mathieu Acher, João B. Ferreira Filho, Benoit
Baudry, Nicolas Sannier, and Jean-Marc Davril. 2015. Matrixminer: A Red Pill
to Architect Informal Product Descriptions in the Matrix. In FSE. ACM.

[8] Alexandre Bergel, Razan Ghzouli, Thorsten Berger, and Michel R. V. Chaudron.
2021. FeatureVista: Interactive Feature Visualization. In SPLC. ACM.

[9] Dirk Beyer. 2008. CCVisu: Automatic Visual Software Decomposition. In ICSE-C.
[10] Goetz Botterweck, Steffen Thiel, Ciarán Cawley, Daren Nestor, and André

Preußner. 2008. Visual Configuration in Automotive Software Product Lines. In
COMPSAC. IEEE.

[11] Goetz Botterweck, Steffen Thiel, Daren Nestor, Saad bin Abid, and Ciarán
Cawley. 2008. Visual Tool Support for Configuring and Understanding Software
Product Lines. In SPLC. IEEE.

[12] Ciarán Cawley, Goetz Botterweck, Patrick Healy, Saad B. Abid, and Steffen
Thiel. 2009. A 3D Visualisation to Enhance Cognition in Software Product Line
Engineering. In ISVC. Springer.

[13] Paul C. Clements and Charles W. Krueger. 2002. Point/Counterpoint: Being
Proactive Pays Off / Eliminating the Adoption Barrier. IEEE Software 19, 4
(2002).

[14] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and An-
drzej Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of
Variability Modeling Approaches. In VaMoS. ACM.

[15] Thiago F. L. de Medeiros, Eduardo S. de Almeida, and Silvio R. de Lemos Meira.
2012. CodeScoping: A Source Code Based Tool to Software Product Lines
Scoping. In SEAA. IEEE.

[16] Thiago H. B. de Oliveira, Martin Becker, and Elisa Y. Nakagawa. 2012. Support-
ing the Analysis of Bug Prevalence in Software Product Lines with Product
Genealogy. In SPLC. ACM.

[17] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019. Mi-
grating Java-Based Apo-Games into a Composition-Based Software Product
Line. In SPLC. ACM.

[18] Sybren Deelstra, Marco Sinnema, and Jan Bosch. 2005. Product Derivation in
Software Product Families: A Case Study. Journal of Systems and Software 74, 2
(2005).

[19] Oscar Díaz, Raul Medeiros, and Leticia Montalvillo. 2019. Change Analysis of
#if-def Blocks with FeatureCloud. In SPLC.

[20] Slawomir Duszynski and Martin Becker. 2012. Recovering Variability Informa-
tion from the Source Code of Similar Software Products. In PLEASE. IEEE.

[21] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the
Source Code of Multiple Software Variants for Reuse Potential. InWCRE. IEEE.

[22] Slawomir Duszynski, Jens Knodel, Matthias Naab, Dirk Hein, and Clemens
Schitter. 2008. Variant Comparison - A Technique for Visualizing Software
Variants. InWCRE. IEEE.

[23] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. 2001. Graphviz—Open Source Graph Drawing Tools. InGD. Springer.

[24] Emelie Engström and Per Runeson. 2011. Software Product Line Testing - A
Systematic Mapping Study. Information and Software Technology 53, 1 (2011).

[25] Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger.
2019. Visualization of Feature Locations with the Tool FeatureDashboard. In
SPLC.

[26] Kevin Feichtinger, Daniel Hinterreiter, Lukas Linsbauer, Herbert Prähofer, and
Paul Grünbacher. 2021. Guiding Feature Model Evolution by Lifting Code-Level
Dependencies. Journal of Computer Languages 63 (2021).

[27] Alessio Ferrari, Giorgio O. Spagnolo, Stefania Gnesi, and Felice Dell’Orletta. 2015.
CMT and FDE: Tools to Bridge the Gap Between Natural Language Documents
and Feature Diagrams. In SPLC.

[28] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In ICSME. IEEE.

[29] Thomas S. Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo
Zhang. 2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned
and Way Ahead. In SPLC. ACM.

[30] Willian M. Freire, Mamoru Massago, Arthur C. Zavadski, Aline M. Malachini,
Miotto Amaral, and Thelma E. Colanzi. 2020. OPLA-Tool v2.0: A Tool for Product
Line Architecture Design Optimization. In SBES.

[31] Muhammad Garba, Adel Noureddine, and Rabih Bashroush. 2016. Musa: A
Scalable Multi-Touch and Multi-Perspective Variability Management Tool. In
WICSA. IEEE.

[32] Gharib Gharibi and Yongjie Zheng. 2016. ArchFeature: Integrating Features
into Product Line Architecture. In SAC.

[33] Jeffrey Heer, Stuart K. Card, and James A. Landay. 2005. Prefuse: A Toolkit for
Interactive Information Visualization. In CHI. ACM.

[34] Florian Heidenreich, Ilie Savga, and Christian Wende. 2008. On Controlled
Visualisations in Software Product Line Engineering. In SPLC.

[35] André Heuer, Kim Lauenroth, MarcoMüller, and Jan-Nils Scheele. 2010. Towards
Effective Visual Modeling of Complex Software Product Lines. In SPLC.

[36] Daniel Hinterreiter, Paul Grünbacher, and Herbert Prähofer. 2020. Visualiz-
ing Feature-Level Evolution in Product Lines: A Research Preview. In REFSQ.
Springer.

[37] Jose-Miguel Horcas, Jose A. Galindo, and David Benavides. 2022. Variability in
Data Visualization: A Software Product Line Approach. In SPLC.

[38] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software Product
Line Engineering: A Practical Experience. In SPLC.

[39] Tom Huysegoms, Monique Snoeck, Guido Dedene, Antoon Goderis, and Frank
Stumpe. 2013. Visualizing Variability Management in Requirements Engineering
through Formal Concept Analysis. Procedia Technology 9 (2013).

[40] Sheny Illescas, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2016. Towards
Visualization of Feature Interactions in Software Product Lines. In VISSOFT.
IEEE.

[41] Aleksandar Jakšić, Robert B. France, Philippe Collet, and Sudipto Ghosh. 2014.
Evaluating the Usability of a Visual FeatureModeling Notation. In SLE. Springer.

[42] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. 2013. Extraction of Product
Evolution Tree from Source Code of Product Variants. In SPLC.

[43] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. 2015. Approximating the Evo-
lution History of Software from Source Code. IEICE Transactions on Information
and Systems 98, 6 (2015).

[44] Kyo C. Kang, SholomG. Cohen, James A. Hess,William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21. Carnegie Mellon University.

[45] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code. In SPLC.

[46] Manjinder Kaur and Parveen Kumar. 2014. Spotting the Phenomenon of Bad
Smells in MobileMedia Product Line Architecture. In IC3. IEEE.

[47] Youngtaek Kim, Hyeon Jeon, Young-Ho Kim, Yuhoon Ki, Hyunjoo Song, and
Jinwook Seo. 2021. Visualization Support for Multi-Criteria Decision Making in
Software Issue Propagation. In PacificVis. IEEE.

[48] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher
Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. 2017. FeatureIDE:
Empowering Third-Party Developers. In SPLC. ACM.



A Comparison of Visualization Concepts and Tools for Variant-Rich System Engineering SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

[49] Jacob Krüger. 2021. Understanding the Re-Engineering of Variant-Rich Systems:
An Empirical Work on Economics, Knowledge, Traceability, and Practices. Ph. D.
Dissertation. Otto-von-Guericke University Magdeburg.

[50] Jacob Krüger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform. In VaMoS. ACM.

[51] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs of
Clone- and Platform-Oriented Software Reuse. In ESEC/FSE. ACM.

[52] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake,
and Thomas Leich. 2018. Apo-Games - A Case Study for Reverse Engineering
Variability from Cloned Java Variants. In SPLC. ACM.

[53] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A
Round-Trip Engineering Process Model for Adopting and Evolving Product
Lines. In SPLC. ACM.

[54] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2017. Finding Lost Features in Cloned Systems. In SPLC.

[55] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting Rid of Clone-And-Own: Moving to a Software Product Line for
Temperature Monitoring. In SPLC. ACM.

[56] Elias Kuiter, Jacob Krüger, and Gunter Saake. 2021. Iterative Development
and Changing Requirements: Drivers of Variability in an Industrial System for
Veterinary Anesthesia. In SPLC. ACM.

[57] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based
Software Product Lines. In ICSE. ACM.

[58] Robert Lindohf, Jacob Krüger, Erik Herzog, and Thorsten Berger. 2021. Software
Product-Line Evaluation in the Large. Empirical Software Engineering 26, 30
(2021).

[59] Felix Loesch and Erhard Ploedereder. 2007. Optimization of Variability in
Software Product Lines. In SPLC. ACM.

[60] Roberto E Lopez-Herrejon and Alexander Egyed. 2013. Towards Interactive
Visualization Support for Pairwise Testing Software Product Lines. In VISSOFT.
IEEE.

[61] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
Systematic Mapping Study of Information Visualization for Software Product
Line Engineering. Journal of Software: Evolution and Process 30, 2 (2018).

[62] Mike Mannion and David Sellier. 2007. Visualising Product Line Requirement
Selection Decisions.

[63] Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi. 2018. Software Product
Line Extraction from Variability-Rich Systems: The Robocode Case Study. In
SPLC.

[64] Jabier Martinez and Anil Kumar Thurimella. 2012. Collaboration and Source
Code Driven Bottom-Up Product Line Engineering. In SPLC.

[65] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. 2016. Name Suggestions during Feature Identification: The
VariClouds Approach. In SPLC.

[66] JabierMartinez, Tewfik Ziadi, Jacques Klein, and Yves Le Traon. 2014. Identifying
and Visualising Commonality and Variability in Model Variants. In ECMFA.
Springer.

[67] Jabier Martinez, Tewfik Ziadi, Raul Mazo, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. 2014. Feature Relations Graphs: A Visualisation Paradigm
for Feature Constraints in Software Product Lines. In VISSOFT. IEEE.

[68] Raul Medeiros, Jabier Martinez, Oscar Díaz, and Jean-Rémy Falleri. 2022. Vi-
sualizations for the Evolution of Variant-Rich Systems: A Systematic Mapping
Study. Information and Software Technology (2022).

[69] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Le-
ich, and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE.
Springer.

[70] Leticia Montalvillo, Oscar Díaz, and Maider Azanza. 2017. Visualizing Product
Customization Efforts for Spotting SPL Reuse Opportunities. In SPLC.

[71] Leticia Montalvillo, Oscar Díaz, and Thomas Fogdal. 2018. Reducing Coordina-
tion Overhead in SPLs: Peering in on Peers. In SPLC.

[72] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2021. Visual-
ization of Object-Oriented Variability Implementations as Cities. In VISSOFT.
IEEE.

[73] Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery. 2022. IDE-
Assisted Visualization of Indebted OO Variability Implementations. In SPLC.
ACM.

[74] Alexandr Murashkin, Michał Antkiewicz, Derek Rayside, and Krzysztof Czar-
necki. 2013. Visualization and Exploration of Optimal Variants in Product Line
Engineering. In SPLC. ACM.

[75] Damir Nešić, Jacob Krüger, S, tefan Stănciulescu, and Thorsten Berger. 2019.
Principles of Feature Modeling. In ESEC/FSE. ACM.

[76] Daren Nestor, Steffen Thiel, Goetz Botterweck, Ciarán Cawley, and Patrick
Healy. 2008. Applying Visualisation Techniques in Software Product Lines. In
SoftVis.

[77] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. 2005. The Story of Moose:
An Agile Reengineering Environment. In ESEC/FSE.

[78] Nan Niu and Steve Easterbrook. 2009. Concept Analysis for Product Line
Requirements. In AOSD.

[79] Andy J. Nolan and Silvia Abrahão. 2010. Dealing with Cost Estimation in
Software Product Lines: Experiences and Future Directions. In SPLC. Springer.

[80] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel
Ohrndorf. 2015. SiPL–A Delta-Based Modeling Framework for Software Product
Line Engineering. In ASE. IEEE.

[81] Andreas Pleuss and Goetz Botterweck. 2012. Visualization of Variability and
Configuration Options. International Journal on Software Tools for Technology
Transfer 14 (2012).

[82] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering. Springer.

[83] Rick Rabiser, Deepak Dhungana, Wolfgang Heider, and Paul Grünbacher. 2009.
Flexibility and End-User Support in Model-Based Product Line Tools. In SEAA.
IEEE.

[84] Márcio Ribeiro, Társis Tolêdo, Johnni Winther, Claus Brabrand, and Paulo Borba.
2012. Emergo: A Tool for Improving Maintainability of Preprocessor-Based
Product Lines. In AOSD.

[85] Dan Rubel, Jaime Wren, and Eric Clayberg. 2011. The Eclipse Graphical Editing
Framework (GEF). Addison-Wesley.

[86] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned Product
Variants: From Ad-Hoc to Managed Software Product Lines. International
Journal on Software Tools for Technology Transfer (2015).

[87] Alcemir R. Santos, Ivan d. C. Machado, and Eduardo S. de Almeida. 2016. RiPLE-
HC: Visual Support for Features Scattering and Interactions. In SPLC.

[88] Alexander Schlie, Kamil Rosiak, Oliver Urbaniak, Ina Schaefer, and Birgit Vogel-
Heuser. 2019. Analyzing Variability in Automation Software with the Variability
Analysis Toolkit. In SPLC.

[89] Klaus Schmid and Martin Verlage. 2002. The Economic Impact of Product Line
Adoption and Evolution. IEEE Software 19, 4 (2002).

[90] David Sellier and Mike Mannion. 2007. Visualising Product Line Requirement
Selection Decision Inter-Dependencies. In REV. IEEE.

[91] S, tefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In ICSME. IEEE.

[92] Michael Stengel, Mathias Frisch, Sven Apel, Janet Feigenspan, Christian Kästner,
and Raimund Dachselt. 2011. View Infinity: A Zoomable Interface for Feature-
Oriented Software Development. In ICSE.

[93] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Bench-
marking the Techniques for the Evolution of Variant-Rich Systems. In SPLC.
ACM.

[94] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In EuroSys. ACM.

[95] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
Visualizing Variability in Object-Oriented Variability-Rich Systems. In SPLC.

[96] Nishanth Thimmegowda and Jörg Kienzle. 2015. Visualization Algorithms for
Feature Models in Concern-Driven Software Development. In MODULARITY.

[97] Thomas Thüm, Sebastian Krieter, and Ina Schaefer. 2018. Product Configura-
tion in the Wild: Strategies for Conflicting Decisions in Web Configurators. In
ConfWS. CEUR-WS.org.

[98] Pablo Trinidad, Antonio R. Cortés, David Benavides, and Sergio Segura. 2008.
Three-Dimensional Feature Diagrams Visualization. In SPLC.

[99] Simon Urli, Alexandre Bergel, Mireille Blay-Fornarino, Philippe Collet, and
Sébastien Mosser. 2015. A Visual Support for Decomposing Complex Feature
Models. In VISSOFT. IEEE.

[100] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software
Product Lines in Action. Springer.

[101] Krzysztof Wnuk, Björn Regnell, and Lena Karlsson. 2009. What Happened to
Our Features? Visualization and Understanding of Scope Change Dynamics in
a Large-Scale Industrial Setting. In RE. IEEE.

[102] Serhiy A Yevtushenko. 2000. System of Data Analysis “Concept Explorer”. In
Proc. 7th National Conference on Artificial Intelligence (KII’00).

[103] Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Defining
a Strategy to Introduce a Software Product Line Using Existing Embedded
Systems. In SPLC. ACM.

[104] Anna Zamansky and Iris Reinhartz-Berger. 2017. Visualizing Code Variabilities
for Supporting Reuse Decisions. In SCME-iStarT@ER.

[105] Nick Q. Zhu. 2013. Data Visualization with D3.js Cookbook. Packt Publishing.


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Goal and Research Questions
	3.2 Selecting Primary Sources
	3.3 Data Extraction
	3.4 Data Analysis

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References



