
Sharing So�ware-Evolution Datasets:

Practices, Challenges, and Recommendations

DAVID BRONESKE, German Centre for Higher Education Research and Science Studies, Germany

SEBASTIAN KITTAN, Otto-von-Guericke University Magdeburg, Germany

JACOB KRÜGER, Eindhoven University of Technology, The Netherlands

Sharing research artifacts (e.g., software, data, protocols) is an immensely important topic for improving

transparency, replicability, and reusability in research, and has recently gained more and more traction in

software engineering. For instance, recent studies have focused on artifact reviewing, the impact of open

science, and speci�c legal or ethical issues of sharing artifacts. Most of such studies are concerned with artifacts

created by the researchers themselves (e.g., scripts, algorithms, tools) and processes for quality assuring these

artifacts (e.g., through artifact-evaluation committees). In contrast, the practices and challenges of sharing

software-evolution datasets (i.e., republished version-control data with person-related information) have

only been scratched in such works. To tackle this gap, we conducted a meta study of software-evolution

datasets published at the International Conference on Mining Software Repositories from 2017 until 2021 and

snowballed a set of papers that build upon these datasets. Investigating 200 papers, we elicited what types

of software-evolution datasets have been shared following what practices and what challenges researchers

experienced with sharing or using the datasets. We discussed our �ndings with an authority on research-data

management and ethics reviews through a semi-structured interview to put the practices and challenges into

context. Through our meta study, we provide an overview of the sharing practices for software-evolution

datasets and the corresponding challenges. The expert interview enriched this analysis by discussing how to

solve the challenges and by de�ning recommendations for sharing software-evolution datasets in the future.

Our results extend and complement current research, and we are con�dent that they can help researchers

share software-evolution datasets (as well as datasets involving the same types of data) in a reliable, ethical,

and trustworthy way.

CCS Concepts: • Software and its engineering→ Software libraries and repositories.

Additional KeyWords and Phrases: datasets, research artifacts, software evolution, artifact sharing, replicability,

reproducibility, research data management

ACM Reference Format:

David Broneske, Sebastian Kittan, and Jacob Krüger. 2024. Sharing Software-Evolution Datasets: Practices,

Challenges, and Recommendations. Proc. ACM Softw. Eng. 1, FSE, Article 91 (July 2024), 24 pages. https:

//doi.org/10.1145/3660798

1 INTRODUCTION

Sharing research artifacts has become a vital concern for most researchers in any �eld, and has
gained major attention in software-engineering research, too [Baker, 2016, Baldassarre et al., 2023,
Childers and Chrysanthis, 2017, Frachtenberg, 2022, Hermann, 2022, Heumüller et al., 2020, Mendez
et al., 2020, Méndez Fernández et al., 2019]. Making artifacts (e.g., software, data, protocols) used

Authors’ Contact Information: David Broneske, German Centre for Higher Education Research and Science Studies,

Hannover, Germany, broneske@dzhw.eu; Sebastian Kittan, Otto-von-Guericke UniversityMagdeburg, Magdeburg, Germany;

Jacob Krüger, Eindhoven University of Technology, Eindhoven, The Netherlands, j.kruger@tue.nl.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART91

https://doi.org/10.1145/3660798

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-9580-740X
HTTPS://ORCID.ORG/0000-0003-2990-5535
HTTPS://ORCID.ORG/0000-0002-0283-248X
https://doi.org/10.1145/3660798
https://doi.org/10.1145/3660798
https://orcid.org/0000-0002-9580-740X
https://orcid.org/0000-0003-2990-5535
https://orcid.org/0000-0002-0283-248X
https://doi.org/10.1145/3660798


91:2 David Broneske, Sebastian Ki�an, and Jacob Krüger

for a piece of research available promises many bene�ts for the research community. For instance,
a shared artifact allows researchers to easily reuse it rather than needing to re-implement it, helps
to validate the corresponding �ndings, and builds trust by contributing to open-science practices.
Consequently, many researchers have started to investigate the practices, challenges, and bene�ts
of artifact sharing within software engineering (cf. Section 6).
In parallel, venues like the International Conference on the Foundations on Software Engineer-

ing [Krishnamurthi, 2013] or Empirical Software Engineering [Méndez Fernández et al., 2019],
publishers like the Association for Computing Machinery,1 and funding institutions like the Euro-
pean Union [Schiltz, 2018] are pushing for more open science. For example, they have introduced
reviews, awards, badges, or legal frameworks for sharing research artifacts. Also, ethical reviews
have become more important and are o�ered or demanded by more and more universities and
research institutes if the research conducted involves personal or otherwise critical data.
Despite such e�orts and a general agreement on the pros of open science, artifact sharing also

faces criticism, for example, because of the e�ort it takes to review artifacts, vague de�nitions of
badges, or enforcing open-science practices on un�t types of artifacts (e.g., con�dential data). So
far, such research and practices focus on the accessibility and reusability of artifacts created by
researchers themselves (e.g., software implemented by them, data measured during experiments).
In contrast, other aspects of how artifacts are shared have often been neglected, for instance, what
format an artifact is stored in, whether an artifact ful�lls legal requirements (e.g., data protection,
software licenses), or ethical concerns like data privacy [Baltes and Diehl, 2016, Gold and Krinke,
2020, 2022]. Such aspects are particularly relevant when researchers share artifacts that involve the
data (e.g., software, personal information) of others.
A primary example for such data is version-control data extracted from software repositories,

which is extensively used in empirical software engineering, for instance, in mining studies, case
studies, or benchmarks. Software repositories (e.g., from Git, GitHub, BitBucket) exhibit various
types of data on the evolution of a software system, for example, source code, developer names, mail
addresses, natural-language comments, commits, pull requests, or documentation. The diversity of
this data poses several challenges to researchers when sharing and reusing Software-Evolution
Datasets (SEDs)—data extracted from a software repository’s version-control and associated systems.
For instance, researchers have to ask themselves: How to best organize the data (e.g., relational
database versus CSV �les) in a way that enables others to reuse it (e.g., not requiring high-performance
computer clusters)? How to ensure data privacy and anonymity (e.g., developer names, callouts in
natural-language comments)? What is allowed to share under what license and legal requirements
(e.g., data protection)? To support researchers working with SEDs and improve current data-sharing
practices, a more profound understanding of how SEDs are and should be shared is required.

Please note that we focus on SEDs in this article because they are particularly critical and subsume
various other types of artifacts. SEDs themselves are important (1) because of the widespread use
of the involved data in software-engineering research; (2) to proof the results reported in respective
papers; (3) to allow other scientist to reuse that data without necessarily collecting the whole
dataset again; and (4) to compare or even benchmark techniques working with the involved data.
Consequently, it is important to ensure that SEDs are complete, documented, reusable, and adhere
to legal regulations. For instance, a developer whose data is involved in a shared SED could ask for
their data to be removed if the respective regulations are violated (e.g., regarding anonymization,
data protection laws, compability of software licenses). In turn, this privacy-utility challenge would
lose information and put additional e�orts on the researchers. Understanding such problems and
challenges is essential when sharing SEDs to avoid future problems. Still, despite the focus on SEDs,

1www.acm.org/publications/policies/artifact-review-and-badging-current

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

www.acm.org/publications/policies/artifact-review-and-badging-current


Sharing So�ware-Evolution Datasets 91:3

our �ndings and recommendations can also be transferred to datasets that involve the same types
of data (e.g., source code, personal data), even if these do not represent a SED.

In this paper, we contribute to this understanding by reporting a meta analysis of 200 papers that
have shared, modi�ed, or used SEDs. For this purpose, we started collecting 41 relevant datasets
and mining-challenge papers from recent iterations (2017–2021) of the International Conference
on Mining Software Repositories (MSR). MSR is a prime venue for software-evolution research,
since it focuses on mining evolution data from software repositories. It even has dedicated tracks
for publishing and working on SEDs, which are also reused well beyond the MSR community
itself (cf. Section 2.2). We forwards-snowballed [Wohlin, 2014] through the papers citing these
SEDs to obtain a broader picture of how the SEDs have (not) been reused and what challenges
researchers experienced while doing so. Then, we discussed our �ndings with an authority on
research-data management and ethics reviews to elicit how SEDs can be shared in a responsible
way. More speci�cally, we contribute the following in this paper:

• We provide an overview of 43 SEDs and the involved data’s properties.
• We structure the challenges of creating, sharing, and reusing SEDs by analyzing 200 papers.
• We discuss the implications of our �ndings based on an expert discussion with an authority
on research-data management and ethics reviews to provide recommendations for research
on how to share SEDs in the future.

• We publish our dataset of 200 papers in a persistent open-access repository.2

Our results underpin the diversity of artifacts contributed via SEDs and the widespread use of
such SEDs with their involved artifacts within the entire software-engineering community; even
though we cover only a subset of all such datasets. We highlight and discuss various problems
regarding the sharing of SEDs (e.g., data formats, topicality, data privacy) that are important for
researchers to consider when sharing, but also when reviewing and using, SEDs. To address these
problems, we provide recommendations for sharing SEDs, which we argue are particularly helpful
for researchers without access to authorities on the matter that can support them. For instance,
not all universities have yet implemented dedicated Ethics Review Boards or hired Data Stewards
for software-engineering research to review the collection and sharing of SEDs. Overall, we hope
that our contributions help the community improve their sharing of SEDs, and thus contribute to
reliable open-science practices in software engineering.
The remainder of this article is structured as follows. First, we describe our methodology in

Section 2. Then, we present the results of our literature review regarding temporary sharing
practices in Section 3. In Section 4, we analyze the problems we identi�ed from our literature review
and present recommendations that are based on our discussion with the authority on research-data
management. Afterwards, we discuss the threats to the validity of our study in Section 5. We then
provide an overview of the related work and compare it to our own study in Section 6 before
concluding this article in Section 7.

2 METHODOLOGY

Next, we introduce our research objectives and methodology, which we summarize in Figure 1.
As we show, we started our meta-study with a literature review to elicit SEDs and papers that
use these SEDs. From the resulting papers, we extracted data about the SEDs’ properties and
the problems reported. Then, we derived eight questions about sharing SEDs, which guided the
semi-structured discussion of our �ndings with an authority on research-data management and
ethics reviews. Based on this discussion, we clari�ed the outcomes of our meta study and speci�ed
recommendations for sharing SEDs. In the following, we describe the individual steps in detail.

2https://doi.org/10.5281/zenodo.11004148

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

https://doi.org/10.5281/zenodo.11004148


91:4 David Broneske, Sebastian Ki�an, and Jacob Krüger

literature review

124 candidate papers

41 dataset papers (IC3-1)

43 dataset papers

324 candidate papers

23 uses papers (IC3-2)

43 dataset papers (IC3-1)

112 uses papers (IC3-2)

24 problems papers (IC3-3)

202 papers

perform manual search
MSR 2017-2021

challenge and data-showcase tracks

perform forwards snowballing
Google Scholar Nov/Dec 2022

10 most cited papers of each paper

apply selection criteria

merge papers

add GitHubTorrent papers

apply selection criteria

200 papers

remove duplicates

extract data

data analysis

specify recommendations (RO3)

classify problems (RO2)

derive interview guide

synthesize results

elicit practices (RO1)

expert discussion

structure responses

1 interviewee

interview transcript

invite experts
authorities on research-data

management and ethics reviews

conduct interviews

Fig. 1. Overview of our methodology.

2.1 Goal and Research Objectives

While artifact sharing has become widely established in research and is actively investigated (cf.
Section 6), there are still many challenges associated to it. In particular, how to handle datasets that
involve data about software evolution and the involved developers has rarely been studied, but
poses many challenges related to copyright, anonymity, ethics, or feasible data storing. Our goal in
this paper is to shed light into current practices as well as challenges of sharing such SEDs, and to
provide recommendations for sharing SEDs in the future. For this purpose, we have de�ned the
following three research objectives (ROs):
RO1 Elicit contemporary practices of sharing SEDs.

First, we elicited how SEDs have recently been shared at a high-quality venue (i.e., that have
undergone a peer review), analyzing their properties (e.g., data involved, size, where published)
to gain an overview of recent sharing practices. The data we extracted is important to identify
and understand practices that should be avoided to ensure legal (e.g., copyrighted data), ethical
(e.g., data privacy), or analysis (e.g., performance issues due to size) problems. To tackle this
objective, we conducted a manual search through �ve years of MSR (cf. Section 2.2), reviewing
papers because these are also most likely the �rst references for researchers who want to use
the respective SEDs.

RO2 Classify the problems of sharing and using SEDs.
Second, we collected and structured the problems of sharing and using SEDs, which involve
problems that we identi�ed for the SEDs themselves and discussed with the expert as well
as problems reported in the snowballed paper in which the SEDs were reused. Through this
analysis, we contribute an overview of typical challenges that researchers and reviewers
should keep in mind when working with SEDs. To tackle this objective, we analyzed all

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:5

200 papers using open-coding and open-card sorting to identify problems and classify those
mentioned, using the expert discussion to con�rm our analysis.

RO3 Specify recommendation for sharing SEDs.
Finally, we speci�ed recommendations for sharing SEDs by re�ecting on the practices and
problems we identi�ed, incorporating the feedback of the expert discussion to propose solu-
tions. So, we aim to contribute concrete recommendations that can help researchers share
their SEDs in the future and can guide reviewers in assessing these. To tackle this objective,
we synthesized solution strategies for the problems we identi�ed in our meta analysis based
on our experiences on research-data management, knowledge of relevant guidelines (e.g.,
FAIR principles [Wilkinson et al., 2016]), and the insights from the expert discussion.

These objectives de�ne the scope of our meta analysis and expert discussion, which we report next.

2.2 Literature Review

To identify relevant papers for addressing our research objectives, we performed a two-step process
based on guidelines and recommendations for searching papers for systematic literature reviews and
mapping studies in software engineering [Brereton et al., 2007, Jalali and Wohlin, 2012, Kitchenham
et al., 2015, Kitchenham and Charters, 2007, Krüger et al., 2020, Shakeel et al., 2018, Wohlin, 2014].
First, we conducted a manual search through the mining-challenge and dataset tracks of MSR, which
are dedicated tracks at a high-quality conference for publishing datasets and solving challenges
associated to these. Since MSR is focused on repository mining, and thus software changes (i.e.,
evolution), these tracks are an ideal opportunity to collect a sample of SEDs—which should be (and
were) the primary focus of these tracks, too. Second, we performed a forwards snowballing on all
relevant papers we identi�ed to collect other papers for which the SEDs were (attempted to be)
used and that report on the respective experiences. Please note that the snowballing was not limited
to any venue and expands our sample to the broader software-engineering research community.
Next, we describe our selection criteria before explaining these two steps in more detail.

Selection Criteria. To select papers, we de�ned three inclusion criteria (ICs):
IC1 The paper is written in English.
IC2 The paper (non-exclusive OR)

IC2-1 shares an SED (e.g., version-control data, issues, pull requests); or
IC2-2 uses an SED and does not just mention it, for instance, in the related work; or
IC2-3 describes or analyzes why an SED could not be reused.

Note that we also considered non-peer-reviewed papers during our snowballing (e.g., master
theses, technical reports), since these are often longer and comprise more technical details. As a
consequence, such papers helped us elicit problems of using SEDs that are often omitted in more
space-restricted peer-reviewed papers. Regarding IC2, we had to identify whether a publication
shares an SED (IC2-1); uses an SED, for instance, to evaluate a new technique (IC2-2); or analyzes
the problems of using an SED, for example, by attempting to reuse it or by comparing datasets
(IC2-3). Note that sharing in this context can also mean that an existing SED has been modi�ed and
re-shared, in which case a paper would ful�ll both IC2-1 and IC2-2. We elicited papers ful�lling IC2-3

to ensure that we do not only capture successful attempts of reusing an SED, but also challenges
(with the SED) that prevented other researchers from that reuse.

Manual Literature Search. As our �rst step, we collected papers published at the MSR mining-
challenge and dataset tracks; with MSR being one of the premier venues for research on software
evolution and sharing corresponding datasets. We decided to search through MSR, because

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:6 David Broneske, Sebastian Ki�an, and Jacob Krüger

(1) it has such dedicated tracks—in contrast to other �agship software-engineering venues cover-
ing research on software evolution (e.g., International Conference on Software Engineering;
International Conference on Software Maintenance and Evolution);

(2) the primary topics of MSR relate to software-evolution data—which is why we expected a
high level of expertise, quality, and best practices when sharing SEDs; and

(3) a manual search through dedicated MSR tracks promises a high ratio of relevant and high-
quality papers, in contrast to an automated search that faces technical problems, is hard to
replicate, and yields many irrelevant or lower quality papers.

Both tracks we considered involve papers that share SEDs, and the challenge track also involves
papers reusing SEDs (i.e., solutions tackling the proposed challenge). Overall, we argue that MSR
provided an ideal opportunity for eliciting papers that are relevant to address our research objectives,
following a similar search idea as Gold and Krinke [2020, 2022] to keep our literature review focused
and avoid the problems of automated searches (e.g., replicability, technical problems).
To identify relevant papers, we manually inspected the MSR entries in dblp.3 Precisely, we

analyzed papers from 2017–2021, which we considered a feasible time span, covering more recent
practices (compared to older papers) while also providing time for the SEDs to be reused (compared
to newer papers from 2022 when we conducted the search). We then identi�ed all papers that are
part of either the dataset or mining-challenge (proposal and solution) tracks. Unfortunately, the
naming in dblp is inconsistent with these track names, for instance, in 2019 the dataset-track papers
are listed under the publisher-provided categories “representations for mining” and “large-scale
mining.” To handle such inconsistencies, we veri�ed that we identi�ed the right and all papers of
these tracks against the MSR conference website of each respective year.
Of the 124 papers in these �ve years and two tracks, we considered 64 relevant according to

our ICs (i.e., 41 papers based on IC2-1 and 23 according to IC2-2). Please note that IC2-3 was not
relevant at this point, because there was no paper comparing di�erent SEDs at the two tracks of
MSR. We show an overview of the number of papers we included for each year and track in Table 1.
As we can see, focusing on the two MSR tracks yielded the rather high ratio (51.61 %) of relevant
papers we hoped for, drastically facilitating our search compared to an automated one. Moreover,
it was easier to identify papers that did not ful�ll our ICs. For instance, the challenge cases (and
consequent solutions) of MSR 2018 on developer activities in IDEs [Proksch et al., 2018] and MSR
2019 on SOTorrent [Baltes et al., 2019] do not build on SEDs.
During a �rst analysis of these papers, we noted that many papers we identi�ed to use an SED

refer to or use parts of the GHTorrent dataset [Gousios, 2013, Gousios and Spinellis, 2012]. Since
this dataset has been widely used in software-engineering research, we decided to add the two
papers relating to it into our analysis, even though these papers are not in line with the time span
we considered relevant. Please note that this is the only dataset that occurred several times, and
we added only this one, due to its wide use in the community. So, we ended up with a total of 126
papers after our manual literature search, 43 of which share and 23 of which use an SED.

Snowballing. In November and December 2022, we performed a forwards snowballing using
Google Scholar to extend our dataset. Particularly, we aimed to identify more papers that use one
of the shared SEDs and that report on the challenges of doing so. To limit the e�ort of this process,
we elicited for each of the 43 SED papers the ten most cited papers at that point in time. Since not
all SEDs had been cited at least ten times when we performed the snowballing, we ended up with
324 snowballed papers (out of a theoretical maximum of 430). We then checked whether these 324
papers ful�lled our inclusion criteria, speci�cally whether they use (IC2-2) and potentially re-share
(IC2-1) an SED or analyze problems of using one (IC2-3). After this step, we ended up with 136

3https://dblp.org/db/conf/msr/index.html

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

https://dblp.org/db/conf/msr/index.html


Sharing So�ware-Evolution Datasets 91:7

Table 1. Number of papers we manually elicited from MSR.

papers

all included discarded

y
e
a
r

track SEDs (IC2-1) uses (IC2-2)

ds 7 4 0 3

20
17

mc 15 1 13 1

ds 15 9 0 6

20
18

mc 14 0 0 14

ds 11 2 0 9

20
19

mc 15 0 0 15

ds 19 14 0 5

20
20

mc 4 1 2 1

ds 16 10 0 6

20
21

mc1 8 0 8 0

total 124 41 23 60

ds: data showcase – mc: mining challenge
1 The challenge case of this year [Karampatsis and Sutton, 2020] was published as a data showcase at MSR 2020.

relevant papers, 112 that use a dataset (IC2-2) and 24 that do not use a dataset but analyze or report
problems that prevent such a use (IC2-3). We identi�ed and removed two duplicates that were part
of MSR and the snowballing search. So, for our manual and snowballing search combined, we
inspected 448 distinct papers (124 MSR, two GHTorrent, 324 snowballed, two duplicates removed),
of which we included 200 as relevant to address our research objectives (44.64 %).

Generalizability. Regarding the generalizability of our sample, we would like to remark that only
the initial set of papers we collected is from MSR only. We conducted forward snowballing to see
whether other researchers reused these SEDs, which we did not limit to a speci�c venue. So, the
initial SEDs themselves are only from MSR, but the snowballed papers (i.e., reshared SEDs, attempts
to use the SEDs) span the whole software-engineering research community and are from venues
like the International Conference on Software Engineering, Foundations on Software Engineering,
Empirical Software Engineering, or Transactions on Software Engineering. Similarly, the authors
of the SEDs and snowballed papers include active researchers across the community (e.g., Paul
Raph, Michael Hilton, David Lo, Alexander Serebrenik, Andy Zaidnman, Georgios Gousios). We
argue that this diversity in venues and authors shows that our sample and the results we derived
from it are relevant and generalizable beyond MSR.

Data Extraction.We used text documents and a spreadsheet to collect all 200 papers and their bib-
liographic information (authors, publication year, title, venue). Then, we performed an open-coding
process in which the second author (alone to ensure consistency) extracted relevant statements and
data from each paper into individual text documents. For this purpose, he read through each paper
in detail and focused on the parts that report the SED itself, how it has been used, and potential prob-
lems with sharing or using it. Moreover, he inspected the actual SED to verify the descriptions in the
paper and to add details into the spreadsheet—if a link to the SED was available and still working.
Based on our research objectives, we de�ned the following data as relevant:
• A non-exclusive categorization for each paper, namely whether it shares an SED (IC2-1), uses
an SED (IC2-2), or is relevant due to analyzing problems connected to SEDs (IC2-3).

• An SED’s properties, for which we also studied the actual SED if it was linked and avail-
able (RO1): (1) name, (2) included data (e.g., repository metadata, (un)anonymized names),
(3) sharing platform (e.g., Zenodo, GitHub), (4) storage format and supported queries (e.g.,
relational/graph database), (5) size, and (6) use cases for which it was suggested (e.g., auto-
mated program repair). This data helps understand temporary sharing practices by shedding
light into what data (1) is shared how (2, 3, 4) and for what purposes (5). What data is shared

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:8 David Broneske, Sebastian Ki�an, and Jacob Krüger

Table 2. �estions we designed to guide our semi-structured expert discussion.

id question objective

Q1 For how many years have you been involved in reviewing/supporting data-sharing practices? context
Q2 In how many software-engineering related ethics/data reviews have you been involved? context

Q3 What are things to keep in mind or problems when sharing SEDs? unbiased insights RO2 & RO3

Q4 What types of data are particularly critical and why in SEDs? unbiased insights RO2

Q5 How could we handle/share such critical types of data? unbiased insights RO3

Q6 What (international) guidelines or references could researchers look into? unbiased insights RO3

Q7 These are types of data we think are critical in the SEDs, what do you think about these? feedback on data for RO2

Q8 How could we handle/share such critical types of data? feedback on data for RO3

Q9 These are the problems the researchers mentioned, what do you think about these? feedback on data for RO2 & RO3

Q10 Would you like to add anything regarding our questions? feedback on discussion

is relevant to understand its criticality regarding ethics or legal regulations, for instance,
whether developers can ask for their personal data or software to be removed later. How data
is shared matters to understand its reusability, availability, as well as resource constraints.
The use cases are important to understand why this data is needed in research, whether this
is ethical, and what constraints exist (e.g., using high-performance clusters). Together, this
data indicates the e�ort researchers are putting into SEDs and provides context for related
challenges (RO2) as well as the design of consequent recommendations (RO3).

• The problems of sharing or using an SED as reported by the authors of a paper (RO2).
After extracting this data, the �rst author of this paper performed a cross-validation, including
an inspection of all 43 papers that share an SED and a random sample of the remaining papers.
We found no errors in the extracted data, but added some re�nements and details; particularly
regarding the problems that were sometimes not described detailed enough in our spreadsheet.
Furthermore, we revisited individual papers and SEDs during our analysis (cf. Section 2.4) to check
for some context details, but did not identify errors.

2.3 Expert Discussion

To rely not only on our experiences and individual guidelines we were aware of to interpret our
data, we aimed to discuss it with experts on research-data management and ethics reviews. For this
purpose, we asked authorities we knew personally, one of which agreed to discuss our �ndings.
Surely, more interviews would have been ideal to gain more insights. However, sharing datasets is
bound to international regulations and guidelines that are typically very similar between countries.
So, discussing the �ndings with one expert who knows about such regulations (particularly the
strict ones of the European Union) should su�ce to understand the most relevant problems and
elicit helpful recommendations for sharing SEDs. Please note that the insights from our interview
may be similar to those one would obtain when discussing SEDs with members of a dedicated
Ethics Review Board. Nonetheless, our contributions (1) represent systematically collected insights
to advance this line of research consistently and (2) provide insights for researchers who may not
have access to such authorities.

To prepare the discussion, we de�ned the nine questions we display in Table 2 as a semi-structured
guide and obtained ethics approval (Eindhoven University of Technology, ERB2023MCS32, Au-
gust 25th, 2023). First, we collected a minimum of background information to put the authority’s
expertise into context. In total, the authority has worked in their role for more then two years
and has reviewed over 80 software-engineering-related data-sharing practices and ethics reviews.
Please note that we refrained from collecting and reporting more data due to data-privacy concerns.
After introducing the concept of SEDs, we asked four open questions (Q3–6) related to problems,
recommendations, and guidelines that are relevant in this context. To not bias the expert, we did

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:9

Table 3. Overview of the 41 SEDs we identified and the types of data they cover (five have two types). Please
note that this overview serves as a lookup table and we only refer to each SED’s name in other tables.

type SEDs #

repository metadata 20-MAD [Claes and Mäntylä, 2020], Andromeda [Opdebeeck et al., 2021],
CROP [Paixão et al., 2018], Docker�les [Henkel et al., 2020], Duplicate Pull-
Requests [Yu et al., 2018], Enterprise-Driven [Spinellis et al., 2020b], GE526 [Vagavolu
et al., 2021], Git Archive [Markovtsev and Long, 2018], Git Repositories [Mockus et al.,
2020], GHTorrent [Gousios, 2013, Gousios and Spinellis, 2012], Linux Kernel [Xu and
Zhou, 2018], ManyTypes4Py [Mir et al., 2021], OCL expressions [Noten et al., 2017],
Quantifying [Diamantopoulos et al., 2020], Repository Deduplication [Spinellis et al.,
2020a], Sampling Projects [Dabic et al., 2021], Semantic Changes [Zhu et al., 2017],
Shoulders of Giants [Zhang et al., 2020], Software Heritage Graph Dataset [Pietri
et al., 2019, 2020a], Structured information [Schermann et al., 2018], UML mod-
els [Robles et al., 2017], Wonderless [Eskandani and Salvaneschi, 2021], World of
code [Ma et al., 2019]

23

software quality Andror2 [Wendland et al., 2021], Bugs.jar [Saha et al., 2018], C/C++ Code Vulnera-
bilities [Fan et al., 2020], Denchmark [Kim et al., 2021], ManySStuBs4J [Karampatsis
and Sutton, 2020], QScored [Sharma and Kessentini, 2021], Software evolution [Ya-
mashita et al., 2017], VulinOSS [Gkortzis et al., 2018]

8

human factors CROP [Paixão et al., 2018], Enterprise-Driven [Spinellis et al., 2020b], Identity Reso-
lution [Fry et al., 2020], Linux Kernel [Xu and Zhou, 2018], Mixed Graph-Relational
Dataset [Ashraf et al., 2020], Software evolution [Yamashita et al., 2017]

6

testing and deployment 50K-C [Martins et al., 2018], Duets [Durieux et al., 2021], JTeC [Corò et al., 2020],
LogChunks [Brandt et al., 2020], TravisTorrent [Beller et al., 2017]

5

mobile apps Android apps [Geiger et al., 2018], AndroidCompass [Nielebock et al., 2021], An-
dror2 [Wendland et al., 2021], AndroZooOpen [Liu et al., 2020]

4

not reveal any of our data during these questions. Only then, we discussed this data and asked
for clari�cations that were not covered before (Q7–9). Finally, we wrapped up the interview by
discussing any things the expert wanted to add. The last author conducted the discussion with the
expert using Microsoft Teams, which automatically transcribed the discussion.

2.4 Data Analysis

After extracting the data from the papers, we performed a collaborative open card-sorting-like
process [Zimmermann, 2016] to identify common themes within that data. Speci�cally, all authors
met in multiple discussion rounds to analyze the extracted data, agree on common themes, and
connect these themes to our research objectives. For instance, we inspected the di�erent types
of data involved in the datastes and derived the types we summarize in Table 3 by agreeing on
their boundaries in terms of relevant data. During this process, we also revisited the individual
papers and datasets to check the correctness and level of detail of the data extraction. Since we
did this step collaboratively and interactively, we cannot compute an inter-rater agreement. Then,
one author coded the interview transcript, using the themes we already identi�ed as codes and
adding new ones if needed. Afterwards, we mapped both data sources via the codes, adding further
explanations and recommendations of the expert to our previous insights.

3 RO1: SHARING PRACTICES

In this section, we provide an overview of the paper data we collected to shed light into how SEDs
have been shared in the past.

Identi�ed SEDs. In Table 3, we display an overview of the 41 SEDs we collected from MSR.
Note that two SEDs have two publications describing them, namely GHTorrent [Gousios, 2013,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:10 David Broneske, Sebastian Ki�an, and Jacob Krüger

Table 4. Data sources used to create the 41 datasets.

version-control data 30 existing datasets 13 other sources 9

GitHub 26 GHTorrent 11 Jira 2
“other” Gits 3 World of Code 2 Google Big Query 2
GitLab 3 AndroZoo 1 security databases (CVE, NVD) 2
Subversion (SVN) 2 Pull-based development 1 Travis CI 2
Apache Git 1 DockerHub 1
BitBucket 1 Google Play 1
Gerrit 1 Linux Kernel Mailing List 1
Mercurial 1 package repositories (e.g., Debian, PyPi, NPM) 1
SourceForge 1

Gousios and Spinellis, 2012] and the Software Heritage Graph Dataset [Pietri et al., 2019, 2020a].
Furthermore, we assigned �ve SEDs [Paixão et al., 2018, Spinellis et al., 2020b, Wendland et al.,
2021, Xu and Zhou, 2018, Yamashita et al., 2017] to two types. For instance, Yamashita et al. [2017]
combine evolving quality metrics (software quality) with developers’ tasks and their dates (human
factors). Consequently, the counts in the rightmost column do add up neither to the 41 SEDs nor
the 43 publications. During our card sorting, we de�ned �ve high-level types of SEDs:
Repository metadata refers to SEDs that have collected and share typical version-control data
(e.g., commits, pull requests). While such SEDs usually involve various additional types of data
(e.g., software quality through bug reports or human factors through commit authors), we did
not assign such SEDs to another type except if the authors explicitly enriched their SEDs for or
with such other data (aiming to reduce redundancies).

Software quality refers to SEDs that involve data about the quality of evolving software systems.
Such SEDs are enriched or narrowed down to focus on, for instance, bugs [Saha et al., 2018],
code smells [Sharma and Kessentini, 2021], or code vulnerabilities [Fan et al., 2020].

Human factors refers to SEDs that focus on the stakeholders of a system. For example, Fry et al.
[2020] share an SED on which they performed identity resolution via commit author identi�ers.

Testing and deployment refers to SEDs that are concerned with the respective development
activities. For instance, such SEDs include additional data on build logs [Brandt et al., 2020] or
continuous integration [Beller et al., 2017].

Mobile apps refers to SEDs that collect software-evolution data related to mobile apps. For exam-
ple, these SEDs represent collections of Android apps [Liu et al., 2020] or commits that touch
Android compatibility checks [Nielebock et al., 2021].

Not surprisingly, we can see that SEDs are mostly concerned with typical repository metadata.
Moreover, it is not surprising that various other important software-engineering research topics
have led to dedicated SEDs (e.g., software quality for bug localization). Re�ecting on the SEDs and
their types, we argue that they seem representative for the broader research on software evolution.

Data Sources. As the �rst property of each SED, we investigated from what sources the researchers
elicited the involved data—which we summarize in Table 4. Since we are studying SEDs, it is not
surprising that all SEDs but one involve version-control data. The exception is the dataset of Linux
mails by Xu and Zhou [2018], which refers to software evolution and version-control data within
the mails. In detail, 26 of the 41 SEDs involve data extracted from GitHub, while 11 other SEDs have
built on the GHTorrent data dump. Consequently, GitHub contributes to more than 90% of the
SEDs. A few other SEDs used di�erent version-control systems or software-hosting platforms, such
as BitBucket, Subversion, and SourceForge. Some SEDs (e.g., the Software Heritage Graph, World
of Code) also combine data from various version-control systems. Only nine of the SEDs explicitly
involve data from other sources, such as Jira, security databases, or di�erent package repositories.
Such other data sources do not only help enrich an SED with diverse projects, but support a certain

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:11

Table 5. Formats used to store data in the SEDs.

format (example) storage formats #

spreadsheet .csv, .xlsx 19
text �les .txt, .xml, .yaml, .json 14
relational database MySQL, PostgreSQL 11
repository GitHub repository 4
graph database Neo4j, Google knowledge graph 3
document-oriented database MongoDB 2

use case and consequent type from Table 3 (e.g., using security databases for data on software
quality). Still, SEDs that are systematically enriched with additional data are sparse in our sample.

Sharing Platforms. Next, we identi�ed on what platform each SED has been shared (i.e., is
hosted), with two dominating our sample: Zenodo with 18 and GitHub with 13 SEDs. Other sharing
platforms are used by one or two SEDs only, speci�cally those platforms are OSF (2), BitBucket (1),
and �gshare (1). While it is a valuable trend that more SEDs are published in persistent repositories,
we also found six instances in which SEDs are still shared on apparently personal or university
websites. In October 2022, three of those six websites were not accessible anymore, namely those
of AndroZooOpen [Liu et al., 2020], UML models [Robles et al., 2017], and TravisTorrent [Beller
et al., 2017]. All other SEDs were still accessible via the link in the papers.

Data Storing. Besides the SEDs’ location, we also investigated the formats researchers have used
to store their SEDs. We display an overview of the primary format types and respective examples in
Table 5. As we can see, we identi�ed six primary formats, with spreadsheets (19) and text �les (14)
being the most common ones. While such formats are sometimes also a means to share data that can
be imported into a database, some researchers provide their SEDs directly in an exported database
scheme. Aligning to the previous two types, the relational scheme is most common (11), with
graph (3) and document-oriented (2) databases being rarer. Four SEDs involve complete GitHub
repositories. Note that some of the SEDs use multiple storage formats, which is why the sum of the
rightmost column in Table 5 does not add up to the 41 SEDs. Interestingly, the SEDs span a variety
of sizes of data, ranging from six to far more than 14 million software projects and including, for
instance, plain version-control data (e.g., commits pull requests, issues), blobs, compiled binaries,
additional documents, and metrics. As a consequence, the data storing of the SEDs is quite diverse.

Use Cases. Finally, we elicited nine use cases that have motivated researchers to create an SED
(i.e., use cases mentioned in SED papers) or for which the SEDs were actually used (i.e., goals of the
papers using an SED). We could summarize most use cases into one of two categories: analyzing
software evolution (20 SEDs, 30 uses) or quality-issue detection and repair (26 SEDs, 20 uses).
The former is concerned with any type of research that aims to improve our understanding of
software evolution. The latter summarizes all research related to studying or resolving quality
problems, including bug evolution, code smells, and automatic program repair. Other use cases
occur less often, even though they are concerned with studying the developers of a system (12
SEDs, 13 uses; e.g., collaboration, interactions, gender), the processes employed (6 SEDs, 9 uses;
e.g., regression testing, reviewing), or system analyses (6 SEDs, 5 uses; e.g., history slicing, feature
location). Interestingly, human(-centered) aspects are mentioned and researched fewer times than
plain software evolution or quality; but they also raise serious ethical and legal concerns (e.g., of
identifying individuals). Furthermore, we identi�ed a few more use cases, particularly in the papers
using SEDs. These use cases include improving research (5 uses), constructing new datasets (5 uses),
bot identi�cation (3 uses), and others (3 SEDs). Logically, we can see that some use cases (e.g., bot
identi�cation) may be hard to anticipate due to technological advances, while it is surprising that
some others are not really covered by dedicated SEDs (e.g., improving research). Lastly, we note

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:12 David Broneske, Sebastian Ki�an, and Jacob Krüger

that we excluded 41 use cases that use an SED, because these were not concerned with software
evolution and did not require an SED. Instead, these use cases built on the SEDs as a collection of
subject systems, for instance, to evaluate techniques for scheduling in serverless software systems.

I1 We identi�ed 41 SEDs, which involve primarily repository metadata (23) and are sometimes
enriched or narrowed down with respect to software quality (8), human factors (6), testing
and deployment (5), or mobile apps (4).

I2 The primary source for SEDs is version-control data, either crawled directly (30) or reused
from another dataset (13), that is sometimes (9) enriched with data from other sources.

I3 SEDs are often shared on established platforms like Zenodo (18) or GitHub (13), but six
SEDs were shared on personal or institutional websites—of which three seem to be o�ine.

I4 The SEDs span a variety of data and sizes, resulting in di�erent storage formats, primarily
spreadsheets (19), text �les (14), and relational databases (11).

I5 The most common use case are related to achieving insights on software evolution, quality
and testing concerns, developers, or development processes; with alignment between use
cases for which the SEDs have been suggested and actually used.

Insights RO1: Dataset Sharing

Discussion. Our insights hint at di�erent concerns researchers should be aware of when it comes
to sharing SEDs. As a conceptual challenge, most SEDs cover the same types of data (I1), which is
rarely enriched with data from other sources or of di�erent types. On the one hand, this may limit
the potential for novel research that requires additional data and it means that most SEDs may
be highly similar in terms of what data they represent. So, working on new research directions
will likely require the construction of dedicated SEDs, while picking most of the existing SEDs
may induce threats to the external validity because mostly GitHub is covered (which, however,
is the largest platform of diverse software projects). On the other hand, adding additional data
to an SED can directly cause problems (e.g., privacy when adding developer characteristics) that
may hamper the sharing of the SED. In this context, researchers need recommendations on how to
deal with such problems to make their SEDs available, which is our goal in the remainder of this
paper. Both views are further underpinned by most SEDs relying on the same data sources (I2) and
the fact that the use cases mostly cover well-established ones—while it is of course challenging
to anticipate completely novel research directions (I5). Similarly, most SEDs are being shared in
(persistent) repositories (I3), which is a good trend in terms of replicability. Nonetheless, this can
also cause problems for researchers in terms of licensing and data privacy. Lastly, we feel that most
SEDs are shared as spreadsheets or relational formats due to convenience (I4). To scale analyses
of large SEDs, other formats may be more appropriate (e.g., graph databases), but require further
research to assess their pros and cons for relevant analyses, to benchmark their scalability, as well
as to design appropriate analysis infrastructures. To summarize, our results for RO1 reveal diverse
practices for sharing SEDs, which hint at di�erent challenges and potentially required solutions.

4 SHARING PROBLEMS AND RECOMMENDATIONS

In the following, we report and discuss the results of our meta-study and expert discussion that
relate to the sharing problems we identi�ed. Afterwards, we propose recommendations that can
guide researchers when aiming to share an SED.

4.1 RO2: Problems of Sharing

To answer RO2, we elicited two sets of problems from our dataset. First, we analyzed the data shared
within the 41 SEDs, aiming to understand to what extent it may be critical to share it. Second, we
elicited the problems mentioned in the 158 snowballed papers that used (133) or analyzed (24) the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:13

Table 6. Overview of users’ data-privacy status that we elicited from the 41 SEDs’ data.

status description impacted SEDs #

none SEDs do not contain sensitive user
data (note: we regard usernames in
links to Git repositories as insensitive)

AndroidCompass, Andror2, Bugs.jar, C/C++ Code Vulnerabilities,
Docker�les, Duets, Duplicate Pull-Requests, Enterprise-Driven,
Git Archive, Git Repositories, JTeC, LogChunks, ManySStuBs4J,
ManyTypes4Py, OCL Expressions, Repository Deduplication,
Sampling Projects, Semantic Changes, Structured information,
TravisTorrent, VulinOSS, Wonderless, World of Code

23

potential problem SEDs contain sensitive user data and
the paper does not discuss privacy
concerns or their resolution

50K-C, AndroZooOpen, Android Apps, CROP, Denchmark,
GE526, GHTorrent, Linux Kernel, Mixed Graph-Relational Data-
base, Quantifying

10

anonymization the SED’s paper explicitly states
anonymization steps, some initial
SEDs have been retrospectively re-
placed with anonymized versions

20-MAD, Andromeda, Identity Resolution, Qscored, Shoulders
of Giants, Software Evolution, Software Heritage Graph Dataset,
UML models

8

SEDs. The former provides insights into more conceptual problems of sharing datasets, while the
latter focuses on reusability problems that should be considered while sharing. Also, we discussed
general problems of sharing SEDs as well as our concrete results with the authority on data sharing.
For consistency, we integrate the expert’s comments as quotations in the following.

Problems of Sharing SEDs.When we conducted our analysis, we were particularly concerned
with and found indicators for data-privacy problems (following GDPR)—which connects to the
type of data involved and how this data is shared (I1, I2, I3). In Table 6, we provide an overview
for which SEDs we found such potential problems. We can see that a majority of 23 SEDs does
not seem to involve sensitive user data and eight SEDs have been anonymized to account for
data privacy. However, some of these eight SEDs were initially published in a di�erent format,
and later replaced with the anonymized version. Lastly, we found ten SEDs that involve sensitive
user data, and the respective papers do not detail any anonymization steps or on what basis the
SED has been published (e.g., consent). Consequently, these SEDs may be problematic considering
ethical and data-privacy concerns, which has been discussed in the past in the context of spamming
developers listed in GHTorrent without their consent [Baltes and Diehl, 2016]. The expert further
noted that privacy-critical data does not only involve names, mail address, and other personal data
of individuals, but can also touch, for instance, data related to their work because that may be used
to evaluate their performance. Overall, the positive insight is that most SEDs seem to be concerned
with data-privacy. However, some do not and we also stress that it would be helpful to report the
handling of data-privacy concerns explicitly within the respective papers.

The expert raised two more problems that we noticed only occasionally in the papers. First,

“this is a bit tricky, but you also need consent for using people’s data.”

Consent means that the individuals whose data is analyzed and shared agree to this processing
and publishing. Since this clashes somewhat with the idea of mining software repositories, this
situation poses an ethical and integrity problem because

“[...] people contributed to those software evolution or software datasets, not for the purpose for
which you are using it. So, is that ethical privacy wise? For sure it’s not. It’s a Gray area [...]”

So, the use of data and obtaining consent becomes somewhat of a gray area and subject to common
sense. Ideally, the version-control system from which the data is collected would de�ne precisely
what data can be used for what purposes, but such information is often hard to �nd and interpret.
For instance, GitHub speci�es:

“You may use information from our Service for the following reasons, regardless of whether the
information was scraped, collected through our API, or obtained otherwise:

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:14 David Broneske, Sebastian Ki�an, and Jacob Krüger

Table 7. Overview of the problems most commonly reported in papers (aiming to) use the 41 SEDs.

problem description impacted SEDs #

quantity and reliability SEDs may not involve entries or a re-
liable ground-truth to serve as a feasi-
ble database

Android Apps, AndroidCompass, Bugs.jar, C/C++ Code Vul-
nerabilities, Duets, Enterprise-Driven, Git Archive, GHTorrent,
ManySStuBs4J, Repository Deduplication, Sampling Projects, Se-
mantic Changes, TravisTorrent, UML Models, Wonderless

15

missing data SEDs may not involve the right data
for an analysis

20-MAD, Android Apps, Bugs.jar, Denchmark, Docker�les, Dupli-
cate Pull-Requests, Git Archive, ManySStuBs4J, ManyTypes4Py,
OCL Expressions, Semantic Changes, TravisTorrent, VulinOSS

13

redundant data SEDs may involve example, toy, or
stale-fork data

20-MAD, CROP, Git Archive, LogChunks, ManySStuBs4J, Many-
Types4Py, OCL Expressions, Sampling Projects, Software Heritage
Graph Dataset, TravisTorrent, Wonderless, World of Code

12

topicality SEDs age and thereby may become
outdated or even unavailable

Android Apps, AndroidCompass, Docker�les, Enterprise-Driven,
Git Archive, GHTorrent, ManySStuBs4J, ManyTypes4Py, Travis-
Torrent, Repository Deduplication

10

faulty or invalid data SEDs may involve manipulated or in-
correctly extracted data

Android Apps, Duplicate Pull-Requests, Git Archive, GHTorrent,
ManySStuBs4J, OCL Expressions, Software Heritage Graph Dataset,
World of Code

8

accesibility SEDs may exhibit complicated struc-
tures or require high-performance re-
sources

C/C++ Code Vulnerabilities, Git Archive, ManySStuBs4J, Semantic
Changes, Software Heritage Graph Dataset, TravisTorrent

6

others SEDs may face other problems, such
as missing tool support for analyses

Andromeda, AndroZooOpen, Qscored 3

reused without problems (mentioned) 50K-C, Andror2, Git Repositories, Identity Resolution, Linux Ker-
nel, Mixed Graph-Relational Database, Quantifying, Shoulders of
Giants, Software Evolution, Structured Information

10

no reuse (attempted) GE526, JTeC 2

• Researchers may use public, non-personal information from the Service for research
purposes, only if any publications resulting from that research are open access.

• Archivists may use public information from the Service for archival purposes.
Scraping refers to extracting information from our Service via an automated process, such as a
bot or webcrawler. Scraping does not refer to the collection of information through our API.
Please see Section H of our Terms of Service for our API Terms.”

[https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies]

These rules allow researchers to mine public GitHub data, but they also enforce constraints like
making any publication open-access. Consequently, we could assume that developers using GitHub
should be aware that their data can be mined (which is also happening more and more often) and
have given their consent by usingGitHub. Still, as also noted byGitHub, there are privacy regulations
that remain relevant, for instance, what data can be used for what purpose (e.g., forbidding spam-
ming) and how to act on user requests (e.g., removal of data from a dataset). Second, the copyright
of the software projects may pose problems [Ballhausen, 2019]. Speci�cally, if an SED shares actual
source code, this may involve not only personal data (e.g., names in comments), but it would only be
allowed if the SED and all source code in it are subject to compatible licenses. In summary, sharing
a SED is subject to several ethical and legal problems that researchers have to assess in advance.

Problems of Using SEDs. For the problems other researchers had with using SEDs, we provide
an overview of the six types of problems we identi�ed in Table 8. In more detail, these problems
are (with references to our related insights on the involved data and its sharing):
Quantity and reliability: We found 15 instances in which authors raised the problem that an

SED is not large or representative enough to serve as a reliable ground-truth. Most often, these
authors argued that an SED is too small or is not respected in a community. As a consequence,
the researchers had to replicate the original queries, construct their own mining pipeline, or

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies


Sharing So�ware-Evolution Datasets 91:15

extend the SED. As a concrete example, the C/C++ Code Vulnerability [Fan et al., 2020] SED has
been considered too small to employ deep-learning models on it.

Missing data (I5): In 13 instances, we identi�ed the problem that an SED does not involve enough
of the right data to properly represent the studied phenomenon. For instance, it has been argued
that Denchmark [Kim et al., 2021] lacks version information for the included bug reports, which
would be helpful in attribute for di�erent analyses.

Redundant data: Quite on the opposite, we also found 12 instances in which authors argued that
an SED involves too much redundant or irrelevant data. Particularly, the typical concern of toy
and example projects (e.g., server blueprints) or stale forks (which most researchers consider not
useful to analyze) have been raised. As a concrete example, some researchers aimed to use the
World of Code [Ma et al., 2019] SED to conduct an expertise-identi�cation analysis, but argued
that developers occurring multiple times due to forks introduces bias.

Topicality (I5): Since software evolution is continuous, any shared SED will become outdated if
it is not regularly updated. Speci�cally, we found 10 instances in which researchers raised this
concern and argued that they required more recent data (e.g., mining it themselves) or periodic
updates of existing SEDs (e.g., as was the case with GHTorrent [Gousios, 2013, Gousios and
Spinellis, 2012]). In the most extreme cases, SEDs may even become unavailable, not because
they are outdated but simply because a sharing platform shuts down.

Faulty or invalid data: Faulty or invalid data threatens all scienti�c work, making the obtained
results meaningless. We identi�ed eight instances in which researchers raised the problem of
incorrect metadata (e.g., timestamps). Two examples are GHTorrent, in which the authorship
date of commits can be overwritten, and the Software Heritage Graph, in which duplicated
commit identi�ers are relabeled to make them unique. Even typical version-control systems and
research tools [Hayashi et al., 2015] allow developers to manipulate recorded version histories.
All such things threaten an SED and may make it useless for the intended analysis.

Accessibility (I3, I4): We found six instances in which researchers reported on accessibility prob-
lems, for instance, because the storage format and structure of an SED are complicated. Further-
more, software-evolution data is constantly growing, which means that researchers also need
more and more computing power as well as hardware to analyze this data. For example, the
Software Heritage Graph requires around 850 TiB storage, and even smaller parts of it that have
been re-shared are often too large for typical computers.

Others: Lastly, we identi�ed three individual problems that do not �t into the previous themes.
For instance, we found that there is apparently no common tool support for semantic changes,
and thus using the corresponding SEDs [Zhu et al., 2017] remains a problem.

Lastly, ten papers used a SED and did not report any problems, whereas two SEDs have not been
used at the point in time when we performed the snowballing search.
When discussing these problems with the expert, they emphasized a few ones and provided

additional explanations. In particular, missing, redundant, faulty, and wrong data can be the simple
consequence of how repositories are mined:

“When you’re crawling data, you don’t know necessarily how accurate it is. How valuable is
your data set then? And are you drawing conclusions on that?”

As indicated by the expert, problems with collecting data can easily yield an SED that may be
meaningless to other researchers because they cannot obtain reliable results:

“So that’s the issue with using crawlers and you don’t know the the quality and integrity of the
data you’re crawling [...] because they are public platforms and anybody can contribute and
they can also contribute nonsense.”

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:16 David Broneske, Sebastian Ki�an, and Jacob Krüger

Re�ecting on the problems we identi�ed with respect to using SEDs, we noticed that these are on a
more technical level, particularly to those problems we discussed before for sharing.

I6 Sharing SEDs is subject to ethical and legal problems, particularly with respect to obtaining
consent, data privacy, and copyright.

I7 Reusing shared SEDs faces particularly technical problems that must be considered before
sharing the SED, namely: (1) ensuring quantity and reliability; (2) having the right data; (3)
handling redundant data; (4) reasoning on topicality; (5) preventing faulty or invalid data;
and (6) considering the accessibility of computing resources.

RO2: Problems of Sharing

Discussion. Our insights show that researchers face two kinds of problems when creating and
sharing SEDs. First, they have to resolve conceptual problems related to ethical and legal aspects
(I6). Second, they must consider technicalities of how they publish their SED so that it can be
properly reused by other researchers (I7). Both kinds of problems require detailed analyses by the
researchers, and our insights to this point can guide them in the process. For instance, our previous
insights into how SEDs are shared (cf. Section 3) in combination with the technical problems we
found can help decide how to set up an SED. So, researchers should work towards resolving the
problems we identi�ed, for instance, by providing checklists for sharing SEDs and setting up tool
infrastructures (e.g., for quality assessments). In the next section, we contribute a �rst step towards
such goals by proposing an initial set of recommendations for sharing SEDs.

4.2 RO3: Recommendations for Sharing SEDs

Based on our previous insights (referenced in the following), we aimed to de�ne a set of recommen-
dations that can help researchers when planning to share their SEDs. We re�ned and enriched these
recommendations based on the expert discussion with the authority on research-data management
and ethics reviews. Please note that this is only a �rst set of recommendations, which are, by nature,
subject to changes, for instance, due to legal changes or changing ethical values. Moreover, we
aimed to account more for rules de�ned by the European Union, since GDPR is a rather strict
regulation that protects the personal data of all European citizens—so any researcher who collects
their data must actually follow this regulation. Similar regulations exist within other countries and
communities, and our recommendations may require corresponding adaptations. However, we
argue that most recommendations are relevant and reasonable for software-engineering researchers
anywhere on earth, as stated by the expert:

“Yeah, but if it’s not GDPR, then it’s of course another kind of privacy regulation that applies.
And nearly all say something about collecting people’s names and email addresses. So you
always need to be worried about that.”

Avoid Collecting (Personal) Data (I1, I2, I5, I6). What data to collect and share is a key problem
for creating and sharing SEDs [Gold and Krinke, 2020, 2022], since human factors are often of
interest and scattered all across artifacts (e.g., commit messages, comments) but also particularly
critical. There are two strategies for dealing with this problem: First, we can simply not collect
the critical data, which is called data minimization (e.g., not collecting commit messages if commit
dates su�ce). Second, we can anonymize critical data (e.g., hashing names). Both strategies can
have pros and cons, for instance, minimizing data reduces the risk of ethical concerns, while it may
remove data that is needed to tackle a research question. Ideally, both strategies are combined and
done already during the data collection:

“And yeah, [...] of course always anonymize, [and] don’t collect the data you don’t need.”

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:17

For instance, a crawler could skip or remove the data that shall be minimized or automatically
hashes mails in natural-language text. Note that both strategies likely require some manual checks.

Despite the additional e�orts and potential limitations regarding what research can be conducted,
a fully anonymized SED has also various advantages. In particular, it ensures that the research is
ethical and ful�lls regulations like GDPR:

“[...] if it’s truly anonymous, GDPR does not apply.”

Still, �nding the balance between what data to minimize, anonymize, or handle di�erently can
remain a challenging problem, even for experts:

“[...] about comments, the IT and I, we are also struggling with that. Is that copyrighted or is that
a publication to which you should refer? You know, cite your references and that’s it. Because it
is on an open platform, anybody can access it. [...]”

To check how to manage such data, the expert speci�es to consult scienti�c-integrity guidelines,
ethical guidelines, privacy regulations, agreed upon standards of the �eld, and common sense.

Account for Di�erent Software Licenses (I4, I6). SEDs may combine source code from various,
automatically crawled software projects. Consequently, copyright licenses of such projects become
a critical concern [Ballhausen, 2019, Riehle and Harutyunyan, 2019]. Speci�cally, to share an SED
involving code, it does not su�ce that the license of each piece of code allows for redistribution,
the licenses of all pieces of code within the SED must be compatible. One strategy to solve this
problem is to:

“[...] �lter out the licenses which you know are compatible.”

Since this may introduce sampling bias, multiple SEDs may be created to have di�erent collections
of source code with compatible licenses. Another strategy that is in line with open science and can
also help tackle the previous problem is to have a fully replicable methodology and to provide only
a dataset of weblinks to the actual source code or repository. This strategy does not only avoid
sharing data, but it also accounts for the dynamic nature of software evolution:

“The dataset is dynamic, so it’s only for that speci�c moment, but [this strategy] allows future
researchers to test your theories at another point in time.”

Ensure Quality and Reusability (I3, I4, I7). Building on our insights on how SEDs are shared
(Section 3) and the problems we identi�ed (Section 4.1), we want to stress the need for quality
controlling an SED that shall be shared. Since we already discussed these problems in detail within
the respective sections and other researchers have discussed the general quality of mined SEDs [Bird
et al., 2009, Chatterjee et al., 2022, Kalliamvakou et al., 2014, 2016], we now sketch two directions
for future research that can help mitigate the problems and that are persisting problems. First,
we argue that we need to establish standardized analysis pipelines and frameworks. Those could
incorporate means for ensuring data privacy, while also contributing to a consistent, reliable, and
comparable analysis processes. Second, SEDs themselves lack standardization (e.g., regarding their
formats). As a consequence, data cleansing becomes a key problem when reusing an SED, wasting
time that is lost for the actual research. Interestingly, these problems should be well-known in
research, but apparently researchers are experiencing them over and over again.

We have de�ned three recommendations for researchers to consider when sharing SEDs,
including di�erent proposals for implementing these.

RO3: Recommendations for Sharing SEDs

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:18 David Broneske, Sebastian Ki�an, and Jacob Krüger

5 THREATS TO VALIDITY

Internal Validity. Our data analysis of the existing SEDs is prone to interpretations. We employed
open coding and card sorting to reduce the risks, but all categories remain our interpretation of the
data. Similarly, wemay havemisunderstood statements in the papers or in additional documentation
of the SEDs. Through our expert interview, we aimed to further con�rm our interpretations and
add complementary insights. While we only interviewed a single expert, which is also a threat to
the internal validity, we argue that the nature of the discussion on regulations and the supportive
data from our literature analysis mitigated this threat. Particularly, we argue that the insights we
obtained at this point would not change strongly when interviewing multiple experts—which are
also challenging to recruit due to the small population of experts on the matter. While we could not
check for saturation, our qualitative interview provided in-depth insights into sharing SEDs and
we followed a semi-structured guide to ensure a systematic and sound conduct. Lastly, we found
further support for parts of our results and recommendations in the related work, which improves
our con�dence in our �ndings and their validity. To allow other researchers to verify and replicate
our work, we share our dataset.2

External Validity.We have performed a manual search and snowballing starting from a single
conference to collect our sample of SEDs. So, we may have missed highly relevant papers that share
SEDs from other venues that could lead to di�erent outcomes. However, MSR is a prime conference
on software evolution, and is the only conference with dedicated tracks for publishing SEDs. For this
reason, we argue that MSR represents a reliable overview of best practices on sharing SEDs, and that
it is a reasonable strategy to start with a sample elicited from MSR tracks. Furthermore, while our
SEDs come primarily from MSR, our snowballing on the use of the SEDs assured that experiences
from a broad range of venues and researchers have been included in our analysis (cf. Section 2.2).
Thus, our insights should be generalizable to other SEDs and also to other software-engineering
datasets that involve the same types of data (e.g., software of other developers, pro�le pages or
discussions with mail addresses, experimental data with free text calling out others). Lastly, the
expert interview and related work providing supportive evidence further improve our con�dence
that our insights and recommendations are generizable beyond MSR and SEDs.

6 RELATED WORK

Even though sharing research artifacts is a long debated issue, researchers in software engineering
have only recently started to investigate this topic systematically and in more detail. For instance,
Timperley et al. [2021] have surveyed 153 software-engineering researchers to understand how
artifacts are created, used, and reviewed. The authors aimed to understand current practices
and derive recommendations for improving the quality of artifacts. Similarly, Hermann et al.
[2020] have surveyed 257 researchers who participated in artifact-evaluation (i.e., reviewing)
processes to understand their expectations for shared research artifacts and their evaluation. The
authors identi�ed speci�c quality expectations, but also inconsistencies in terminology as well
as expectations that should be resolved. Heumüller et al. [2020] have investigated software tools
shared at the International Conference on Software Engineering to analyze whether these were still
available, identifying a positive trend over time. Other researchers have discussed the pros and cons
of artifact sharing in the context of open science [Baldassarre et al., 2023, Hermann, 2022, Mendez
et al., 2020], proposed or improved guidelines for sharing and reviewing artifacts [Damasceno
and Strüber, 2021, Krishnamurthi, 2013, Krishnamurthi and Vitek, 2015, Méndez Fernández et al.,
2019, Saucez et al., 2019, Winter et al., 2022, Zilberman and Moore, 2020], or further analyzed the
incentives of artifact sharing and badges [Childers and Chrysanthis, 2017, Frachtenberg, 2022,
Saucez and Iannone, 2018]—in software engineering and computer science in general. While

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:19

Table 8. Overview of the related work and its connections to our own study.

topic papers contribution relation to our work

artifact-sharing and
open-science initiatives

[Baldassarre et al., 2023,
Krishnamurthi, 2013, Krish-
namurthi and Vitek, 2015,
Mendez et al., 2020, Mén-
dez Fernández et al., 2019]

create awareness for sharing
software artifacts and open
science in software engineer-
ing

motivation for our work, but
no shared insights

studies on sharing soft-
ware and other datasets
in software engineering
and related areas

[Childers and Chrysanthis,
2017, Damasceno and Strüber,
2021, Frachtenberg, 2022, Her-
mann, 2022, Hermann et al.,
2020, Heumüller et al., 2020,
Kotti et al., 2020, Kotti and
Spinellis, 2019, Saucez and
Iannone, 2018, Saucez et al.,
2019, Timperley et al., 2021,
Winter et al., 2022, Zilberman
and Moore, 2020]

investigate artifact sharing
regarding reviewing/creation
standards, citations, incen-
tives, or career bene�ts; iden-
tify lacks of community stan-
dards and quality require-
ments for sharing; do not fo-
cus on ethical concerns or
SEDs

motivation for our work, but
we (1) focus on SEDs instead
of software or all datasets, (2)
do not investigate metrics, im-
pact, or reviewing guidelines,
(3) aim to resolve the iden-
ti�ed lacks for SEDs speci�-
cally

software licensing [Ballhausen, 2019, Riehle and
Harutyunyan, 2019]

review existing software li-
censes and licensing practices
for creating new software

related to our insights and
recommendation for checking
software licenses when creat-
ing SEDs that comprise vari-
ous software repositories

mining Git repositories [Bird et al., 2009, Chatter-
jee et al., 2022, Kalliamvakou
et al., 2014, 2016]

report �rst initiatives for cre-
ating SEDs by mining soft-
ware repositories, emphasiz-
ing data-quality issues and de-
riving mining standards

related to our insights on qual-
ity problems of SEDs and the
consequent recommendation

sharing and analyzing
SEDs

[Baltes et al., 2019, Di Cosmo,
2018, Gousios, 2013, Gousios
and Spinellis, 2012, Pietri
et al., 2020b, Tiwari et al.,
2017, Trautsch et al., 2020]

create and share well-known
SEDs or tools for analyzing
SEDs

motivation for our work, but
we focus on problems around
the matter that have not been
discussed in these works

ethical dataset creation [Baltes and Diehl, 2016, Gold
and Krinke, 2020, 2022]

discuss ethical concerns of
creating datasets, particularly
when mining repositories

related to our insights and
recommendation on legal and
ethical issues, but we (1)
build on a di�erent research
method (2) contribute a more
in-depth study on SEDs as a
whole, (3) and cover a broader
perspective on the matter

representing extensive research on artifact sharing, none of these works is concerned with the
speci�c practices and challenges of sharing SEDs. We argue that SEDs face the inherent problem
of involving personal or otherwise critical data that poses ethical concerns not investigated by
any of the previous works. Moreover, we are not concerned with metrics or artifact-reviewing
guidelines, which these works focus on. As a consequence, we are extending the scope of such
works regarding how to share SEDs.

In the context of SEDs, additional concerns like copyright, licensing, and data privacy [Ballhausen,
2019, Riehle and Harutyunyan, 2019] are of utmost importance, since researchers are not sharing
their own data, but data contributed by and including information of others (e.g., open-source
developers). For instance, large-scale SEDs, such as GHTorrent or SoftwareHeritage [Baltes et al.,
2019, Di Cosmo, 2018, Gousios, 2013, Gousios and Spinellis, 2012, Pietri et al., 2020b], or analysis
frameworks for such SEDs [Tiwari et al., 2017, Trautsch et al., 2020] have been shared. In the past,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:20 David Broneske, Sebastian Ki�an, and Jacob Krüger

ethical concerns regarding the personal data in and certain practices of using such SEDs have
been raised. The concern is that the impacted developers may loose their trust in and may stop
supporting research, for instance, due to spam [Baltes and Diehl, 2016] or questionable studies that
waste their time.4 While several researchers have been concerned with the pros and cons of mining
software-evolution data [Bird et al., 2009, Chatterjee et al., 2022, Kalliamvakou et al., 2014, 2016],
they rarely discuss the ethical concerns or best practices of actually sharing the resulting SEDs.
For this reason, it is not surprising that some released SEDs have also been criticized for ethical
concerns. Unfortunately, the analyses of such concerns have been primarily anecdotal in the past.
So, while there is some overlap in individual insights and such works have motivated us as well as
support some of our results (e.g., regarding software licenses and the quality of SEDs), we provide
a more systematic and in-depth overview of how to share SEDs that these works have not covered.
The most detailed research related to our study has been conducted by Gold and Krinke [2020,

2022], who discuss the ethics of mining software repositories in general. For this purpose, Gold
and Krinke discussed the MSR mining challenges from 2006 until 2021 based on their personal
experiences and conducted a community survey; using individual cases (including the creation
of a SED) to showcase ethical concerns that exist in such cases. This research is closely related to
ours (e.g., partial overlap in methodology and �ndings on personal data in SEDs), but we focused
more on sharing SEDs as a whole—covering several additional challenges compared to Gold and
Krinke (e.g., on reusing SEDs). Moreover, we employed a di�erent methodology, building on
published experiences and the expertise of an independent authority instead of our own opinions
or a community survey. As a consequence, we provide a more in-depth overview of the practices
and challenges of sharing SEDs, complementing and expanding upon these previous works. Finally,
Kotti and Spinellis [2019] as well as Kotti et al. [2020] are concerned with the datasets published at
MSR, but investigate their scienti�c impact (e.g., use, citations). Again, there is some overlap to our
methodology, but we have a di�erent focus, since we research the sharing practices surrounding
SEDs. This represents a di�erent goal and focuses on one type of dataset published at MSR.

In summary, we advance considerably upon the current state-of-the-art on sharing practices and
challenges for SEDs, which have not been studied in this detail before. Particularly, we elicit what
researchers are doing instead of surveying their opinions or what they claim to do by qualitatively
analyzing papers instead of surveying researchers. By contributing an overview of the shared
SEDs, synthesizing the problems of sharing and reusing these SEDs, as well as discussing these
and potential solutions with an authority on the topic, we provide an in-depth understanding of
sharing SEDs to guide researchers. Still, the similarities to the related work are supportive evidence
for our �ndings, and partly highlight that these are persistent problems within the community.

7 CONCLUSION

In this paper, we reported a meta study of 200 papers that share or (attempt to) use an SED. We
discussed our �ndings with an expert on the topic to obtain more in-depth insights and con�rm our
interpretation. Overall, we (RO1) found that SEDs exhibit diverse properties, for instance, regarding
data formats or sharing platforms (cf. Section 3); (RO2) elicited ethical, legal, and technical problems
(cf. Section 4.1); and (RO3) derived three recommendations for researchers to re�ect on (Section 4.2).
We hope that our contributions help researchers prepare and share their SEDs in the future.
Moreover, we discussed various directions for future work intended to improve the sharing of SEDs.

DATA AVAILABILITY

Our data is available in a persistent open-access Zenodo repository.2

4https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source


Sharing So�ware-Evolution Datasets 91:21

REFERENCES

Usman Ashraf, Christoph Mayr-Dorn, Alexander Egyed, and Sebastiano Panichella. 2020. A Mixed Graph-Relational Dataset

of Socio-technical Interactions in Open Source Systems. In MSR. ACM.

Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 7604 (2016).

Maria Teresa Baldassarre, Neil Ernst, Ben Hermann, Tim Menzies, and Rahul Yedida. 2023. (Re)Use of Research Results (Is

Rampant). Communications of the ACM 66, 2 (2023).

Miriam Ballhausen. 2019. Free and Open Source Software Licenses Explained. Computer 52, 6 (2019).

Sebastian Baltes and Stephan Diehl. 2016. Worse Than Spam: Issues In Sampling Software Developers. In ESEM. ACM.

Sebastian Baltes, Christoph Treude, and Stephan Diehl. 2019. SOTorrent: Studying the Origin, Evolution, and Usage of Stack

Over�ow Code Snippets. In MSR. IEEE.

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: synthesizing Travis CI and GitHub for full-stack

research on continuous integration. In MSR. IEEE Computer Society.

Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German, and Prem Devanbu. 2009. The Promises

and Perils of Mining Git. In MSR. IEEE.

Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. 2020. LogChunks: A Data Set for Build Log

Analysis. In MSR. ACM.

O. Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007. Lessons from Applying

the Systematic Literature Review Process within the Software Engineering Domain. Journal of Systems and Software 80,

4 (2007).

Preetha Chatterjee, Tushar Sharma, and Paul Ralph. 2022. Empirical Standards for Repository Mining. In MSR. ACM,

142––143. https://doi.org/10.1145/3524842.3528032

Bruce R. Childers and Panos K. Chrysanthis. 2017. Artifact Evaluation: Is It a Real Incentive?. In 2017 IEEE 13th International

Conference on e-Science (e-Science).

Maëlick Claes and Mika V. Mäntylä. 2020. 20-MAD: 20 Years of Issues and Commits of Mozilla and Apache Development. In

MSR. ACM.

Federico Corò, Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino. 2020. JTeC: A Large Collection

of Java Test Classes for Test Code Analysis and Processing. In MSR. ACM.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in GitHub for MSR Studies. In MSR. IEEE, IEEE.

Carlos Diego Nascimento Damasceno and Daniel Strüber. 2021. Quality Guidelines for Research Artifacts in Model-Driven

Engineering. In 2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems

(MODELS). 285–296.

Roberto Di Cosmo. 2018. Software Heritage: Collecting, Preserving, and Sharing All Our Source Code. In ASE. ACM.

Themistoklis Diamantopoulos, Michail D. Papamichail, Thomas Karanikiotis, Kyriakos C. Chatzidimitriou, and Andreas L.

Symeonidis. 2020. Employing Contribution and Quality Metrics for Quantifying the Software Development Process. In

MSR. ACM.

Thomas Durieux, César Soto-Valero, and Benoit Baudry. 2021. Duets: A Dataset of Reproducible Pairs of Java Library-Clients.

In MSR. IEEE, IEEE.

Na�se Eskandani and Guido Salvaneschi. 2021. The Wonderless Dataset for Serverless Computing. In MSR. IEEE.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code Vulnerability Dataset with Code Changes and

CVE Summaries. In MSR. ACM.

Eitan Frachtenberg. 2022. Research artifacts and citations in computer systems papers. PeerJ Computer Science 8 (2022).

Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A Dataset and an Approach for Identity Resolution of

38 Million Author IDs extracted from 2B Git Commits. In MSR. ACM.

Franz-Xaver Geiger, Ivano Malavolta, Luca Pascarella, Fabio Palomba, Dario Di Nucci, and Alberto Bacchelli. 2018. A

graph-based dataset of commit history of real-world Android apps. In MSR. ACM.

Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. 2018. VulinOSS: a dataset of security vulnerabilities in

open-source systems. In MSR. ACM.

Nicolas E. Gold and Jens Krinke. 2020. Ethical Mining: A Case Study on MSR Mining Challenges. In MSR (Seoul, Republic of

Korea) (MSR ’20). Association for Computing Machinery, New York, NY, USA, 265–276.

Nicolas E Gold and Jens Krinke. 2022. Ethics in the mining of software repositories. Empirical Software Engineering 27, 1

(2022).

Georgios Gousios. 2013. The GHTorent dataset and tool suite. In MSR, Thomas Zimmermann, Massimiliano Di Penta, and

Sunghun Kim (Eds.). IEEE, IEEE Computer Society.

Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from a �rehose. In MSR. IEEE Computer Society.

Shinpei Hayashi, Daiki Hoshino, Jumpei Matsuda, Motoshi Saeki, Takayuki Omori, and Katsuhisa Maruyama. 2015. Historef:

A tool for edit history refactoring. In SANER. IEEE.

Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas W. Reps. 2020. A Dataset of Docker�les. In MSR. ACM.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.

https://doi.org/10.1145/3524842.3528032


91:22 David Broneske, Sebastian Ki�an, and Jacob Krüger

Ben Hermann. 2022. What Has Artifact Evaluation Ever Done for Us? IEEE Security & Privacy 20, 5 (2022).

Ben Hermann, Stefan Winter, and Janet Siegmund. 2020. Community Expectations for Research Artifacts and Evaluation

Processes. In ESEC/FSE. ACM.

Robert Heumüller, Sebastian Nielebock, Jacob Krüger, and Frank Ortmeier. 2020. Publish or Perish, but do not Forget Your

Software Artifacts. Empirical Software Engineering (2020).

Samireh Jalali and Claes Wohlin. 2012. Systematic Literature Studies: Database Searches vs. Backward Snowballing. In

ESEM. ACM.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2014. The

Promises and Perils of Mining GitHub. In MSR. ACM.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2016. An

In-Depth Study of the Promises and Perils of Mining GitHub. Empirical Software Engineering 21, 5 (2016).

Rafael-Michael Karampatsis and Charles Sutton. 2020. How Often Do Single-Statement Bugs Occur?: The ManySStuBs4J

Dataset. In MSR. ACM.

Misoo Kim, Youngkyoung Kim, and Eunseok Lee. 2021. Denchmark: A Bug Benchmark of Deep Learning-related Software.

In MSR. IEEE, IEEE.

Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. 2015. Evidence-Based Software Engineering and Systematic

Reviews. CRC Press.

Barbara A. Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software

Engineering. Technical Report EBSE-2007-01. Keele University.

Zoe Kotti, Konstantinos Kravvaritis, Konstantina Dritsa, and Diomidis Spinellis. 2020. Standing on shoulders or feet? An

extended study on the usage of the MSR data papers. Empirical Software Engineering 25, 5 (2020).

Zoe Kotti and Diomidis Spinellis. 2019. Standing on shoulders or feet? The usage of the MSR data papers. In MSR. IEEE.

Shriram Krishnamurthi. 2013. Artifact Evaluation for Software Conferences. SIGSOFT Softw. Eng. Notes 38, 3 (may 2013).

Shriram Krishnamurthi and Jan Vitek. 2015. The Real Software Crisis: Repeatability as a Core Value. Commun. ACM 58, 3

(feb 2015).

Jacob Krüger, Christian Lausberger, Ivonne von Nostitz-Wallwitz, Gunter Saake, and Thomas Leich. 2020. Search. Review.

Repeat? An Empirical Study of Threats to Replicating SLR Searches. Empirical Software Engineering 25, 1 (2020).

Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, and John Grundy. 2020. AndroZooOpen: Collecting Large-scale Open Source

Android Apps for the Research Community. In MSR. ACM.

Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus. 2019. World of code: an infrastructure for

mining the universe of open source VCS data. In MSR. IEEE / ACM.

Vadim Markovtsev and Waren Long. 2018. Public git archive: a big code dataset for all. In MSR. ACM.

Pedro Martins, Rohan Achar, and Cristina V. Lopes. 2018. 50K-C: a dataset of compilable, and compiled, Java projects. In

MSR. ACM.

Daniel Mendez, Daniel Graziotin, Stefan Wagner, and Heidi Seibold. 2020. Open Science in Software Engineering. In

Contemporary Empirical Methods in Software Engineering. Springer.

Daniel Méndez Fernández, Martin Monperrus, Robert Feldt, and Thomas Zimmermann. 2019. The open science initiative of

the Empirical Software Engineering journal. Empirical Software Engineering 24 (2019).

Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. 2021. ManyTypes4Py: A Benchmark Python Dataset for Machine

Learning-based Type Inference. In MSR. IEEE.

Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020. A Complete Set of Related Git Repositories

Identi�ed via Community Detection Approaches Based on Shared Commits. In MSR. ACM.

Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2021. AndroidCompass: A Dataset of Android

Compatibility Checks in Code Repositories. In MSR. IEEE.

Jeroen Noten, Josh Mengerink, and Alexander Serebrenik. 2017. A data set of OCL expressions on GitHub. In MSR. IEEE

Computer Society.

Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2021. Andromeda: A Dataset of Ansible Galaxy Roles and Their

Evolution. In MSR. IEEE.

Matheus Paixão, Jens Krinke, DongGyun Han, and Mark Harman. 2018. CROP: linking code reviews to source code changes.

In MSR. ACM.

Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The software heritage graph dataset: public software

development under one roof. In MSR. IEEE / ACM.

Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2020a. The Software Heritage Graph Dataset: Large-scale Analysis

of Public Software Development History. In MSR. ACM.

Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2020b. The Software Heritage Graph Dataset: Large-Scale Analysis

of Public Software Development History. In MSR. ACM.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



Sharing So�ware-Evolution Datasets 91:23

Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A General Dataset for Empirical Studies on

In-IDE Activities of Software Developers. In MSR.

Dirk Riehle and Nikolay Harutyunyan. 2019. Open-Source License Compliance in Software Supply Chains. In Towards

Engineering Free/Libre Open Source Software (FLOSS) Ecosystems for Impact and Sustainability. Springer.

Gregorio Robles, Truong Ho-Quang, Regina Hebig, Michel R. V. Chaudron, and Miguel Angel Fernández. 2017. An extensive

dataset of UML models in GitHub. In MSR. IEEE Computer Society.

Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad. 2018. Bugs.jar: a large-scale, diverse dataset

of real-world Java bugs. In MSR. ACM.

Damien Saucez and Luigi Iannone. 2018. Thoughts and Recommendations from the ACM SIGCOMM 2017 Reproducibility

Workshop. SIGCOMM Comput. Commun. Rev. 48, 1 (apr 2018).

Damien Saucez, Luigi Iannone, and Olivier Bonaventure. 2019. Evaluating the Artifacts of SIGCOMM Papers. SIGCOMM

Comput. Commun. Rev. 49, 2 (may 2019).

Gerald Schermann, Sali Zumberi, and Jürgen Cito. 2018. Structured information on state and evolution of docker�les on

github. In MSR. ACM.

Marc Schiltz. 2018. Science Without Publication Paywalls: cOAlition S for the Realisation of Full and Immediate Open

Access. PLOS Medicine 15, 9 (09 2018).

Yusra Shakeel, Jacob Krüger, Ivonne von Nostitz-Wallwitz, Christian Lausberger, Gabriel C. Durand, Gunter Saake, and

Thomas Leich. 2018. (Automated) Literature Analysis - Threats and Experiences. In SE4Science. ACM.

Tushar Sharma and Marouane Kessentini. 2021. QScored: A Large Dataset of Code Smells and Quality Metrics. In MSR.

IEEE.

Diomidis Spinellis, Zoe Kotti, Konstantinos Kravvaritis, Georgios Theodorou, and Panos Louridas. 2020b. A Dataset of

Enterprise-Driven Open Source Software. In MSR. ACM.

Diomidis Spinellis, Zoe Kotti, and Audris Mockus. 2020a. A Dataset for GitHub Repository Deduplication. In MSR. ACM.

Christopher S. Timperley, Lauren Herckis, Claire Le Goues, and Michael Hilton. 2021. Understanding and Improving Artifact

Sharing in Software Engineering Research. Empirical Software Engineering 26, 67 (2021).

Nitin M. Tiwari, Ganesha Upadhyaya, Hoan A. Nguyen, and Hridesh Rajan. 2017. Candoia: A Platform for Building and

Sharing Mining Software Repositories Tools as Apps. In MSR. IEEE.

Alexander Trautsch, Fabian Trautsch, Ste�en Herbold, Benjamin Ledel, and Jens Grabowski. 2020. The smartshark ecosystem

for software repository mining. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:

Companion Proceedings.

Dheeraj Vagavolu, Vartika Agrahari, Sridhar Chimalakonda, and Akhila Sri Manasa Venigalla. 2021. GE526: A Dataset of

Open-Source Game Engines. In MSR. IEEE.

Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven Huang, Kevin Moran, Julia Rubin, and Mattia

Fazzini. 2021. Andror2: A Dataset of Manually-Reproduced Bug Reports for Android apps. In MSR. IEEE.

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas

Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes,

Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra

Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Carole Goble, Je�rey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen, Rob

Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt

Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag,

Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra

Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons. 2016. The FAIR Guiding Principles

for Sienti�c Data Management and Stewardship. Scienti�c Data 3, 1 (2016).

Stefan Winter, Christopher S. Timperley, Ben Hermann, Jürgen Cito, Jonathan Bell, Michael Hilton, and Dirk Beyer. 2022. A

Retrospective Study of One Decade of Artifact Evaluations. In ESEC/FSE (Singapore, Singapore) (ESEC/FSE 2022). ACM,

New York, NY, USA.

Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering.

In EASE. ACM.

Yulin Xu and Minghui Zhou. 2018. A multi-level dataset of linux kernel patchwork. In MSR. ACM.

Aiko Yamashita, S. Amirhossein Abtahizadeh, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2017. Software evolution and

quality data from controlled, multiple, industrial case studies. In MSR. IEEE Computer Society.

Yue Yu, Zhixing Li, Gang Yin, Tao Wang, and Huaimin Wang. 2018. A dataset of duplicate pull-requests in github. In MSR.

ACM.

Xunhui Zhang, Ayushi Rastogi, and Yue Yu. 2020. On the Shoulders of Giants: A New Dataset for Pull-based Development

Research. In MSR. ACM.

Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A dataset for dynamic discovery of semantic changes in

version controlled software histories. In MSR. IEEE Computer Society.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.



91:24 David Broneske, Sebastian Ki�an, and Jacob Krüger

Noa Zilberman and Andrew W. Moore. 2020. Thoughts about Artifact Badging. SIGCOMM Comput. Commun. Rev. 50, 2

(may 2020).

Thomas Zimmermann. 2016. Card-Sorting: From Text to Themes. In Perspectives on Data Science for Software Engineering.

Elsevier.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 91. Publication date: July 2024.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Goal and Research Objectives
	2.2 Literature Review
	2.3 Expert Discussion
	2.4 Data Analysis

	3 RO1: Sharing Practices
	4 Sharing Problems and Recommendations
	4.1 RO2: Problems of Sharing
	4.2 RO3: Recommendations for Sharing SEDs

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

