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ABSTRACT
In software-engineering research, many empirical studies are conducted with open-
source or industry developers. However, in contrast to other research communities
like economics or psychology, only few experiments use financial incentives (i.e.,
paying money) as a strategy to motivate participants’ behavior and reward their
performance. The most recent version of the SIGSOFT Empirical Standards
mentions payouts only for increasing participation in surveys, but not for mimicking
real-world motivations and behavior in experiments. Within this article, we report a
controlled experiment in which we tackled this gap by studying how different
financial incentivization schemes impact developers. For this purpose, we first
conducted a survey on financial incentives used in the real-world, based on which we
designed three incentivization schemes: (1) a performance-dependent scheme that
employees prefer, (2) a scheme that is performance-independent, and (3) a scheme
that mimics open-source development. Then, using a between-subject experimental
design, we explored how these three schemes impact participants’ performance. Our
findings indicate that the different schemes can impact participants’ performance in
software-engineering experiments. Our results are not statistically significant,
possibly due to small sample sizes and the consequent lack of statistical power, but
with some notable trends that may inspire future hypothesis generation. Our
contributions help understand the impact of financial incentives on participants in
experiments as well as real-world scenarios, guiding researchers in designing
experiments and organizations in compensating developers.

Subjects Human-Computer Interaction, Algorithms and Analysis of Algorithms, Social
Computing, Software Engineering
Keywords Software engineering, Experimentation, Financial incentives

MOTIVATION
Experimentation in software engineering rarely involves financial incentives to
compensate and motivate participants. However, in most real-world situations it arguably
matters whether software developers are compensated, for instance, in the form of wages
or bug-bounties (Krüger, Nielebock & Heumüller, 2020; Krishnamurthy & Tripathi, 2006)
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of open-source communities. Particularly experimental economists use financial
incentives during experiments for two reasons (Weimann & Brosig-Koch, 2019). First,
financial incentives improve the validity of the experiment by mimicking real-world
incentivisation schemes to motivate participants’ realistic behavior and performance. To
this end, in addition to show-up or participation fees, the actual performance of
participants during the experiment is rewarded by defining a payoff function that maps the
participants’ performance during the experiment to financial rewards or penalties. Second,
they allow to study different incentives with respect to their impact on participants’
performance. It is likely that using financial incentives in empirical software engineering
can help improve the validity by mimicking and staying true to the real world, too.

Interestingly, there are no guidelines or recommendations on using financial incentives
in software-engineering experimentation. For instance, the current SIGSOFT Empirical
Standards (https://github.com/acmsigsoft/EmpiricalStandards) (Ralph, 2021), as of
January 22, 2024 (commit 9374ea5), mention incentives solely in the context of
longitudinal studies and rewarding participation in surveys to increase participation. Also,
to the best of our knowledge and based on a literature review, financial incentives that
reward participants’ performance during an experiment are not used systematically in
empirical software engineering. Although some studies broadly incentivize performance
(e.g., Sayagh et al. (2020) or Shargabi et al. (2020)), these do not aim to improve the validity
of the experiment, only participation. Furthermore, we know from experimental
economics (Charness & Kuhn, 2011; Carpenter & Huet-Vaughn, 2019) that finding a
realistic (and thus externally valid) way to reward performance is challenging and no
simple one-fits-all solution exists. For instance, the performance of open-source developers
depends less on financial rewards than those of industrial developers (Baddoo, Hall &
Jagielska, 2006; Ye & Kishida, 2003; Huang, Ford & Zimmermann, 2021; Beecham et al.,
2008).

As a step towards understanding and systematizing the potential of using financial
incentives in software engineering experimentation, we have conducted a two-part study
comprising a survey and a controlled experiment in the context of bug detection through
code reviews (Krüger et al., 2022). First, we used a survey with practitioners to elicit real-
world incentivisation schemes on bug finding. In the survey, we distinguished between the
schemes most participants prefer and those actually employed. Building on the results, we
defined one payoff function for our experiment. Please note that we originally planned to
have two functions from the survey, one for the most applied (MA) and one for the most
preferred (MP) incentives (Krüger et al., 2022). However, the survey responses for the MA
incentives were identical to no performance-based incentives, which we added as a control
treatment anyway. To extend our experiment, we added two more payoff functions: one
that is performance-independent and one that resembles the motives of open-source
developers. We derived the latter function using the induced-value method established in
experimental economics (Smith, 1976; Weimann & Brosig-Koch, 2019), which induces a
controlled willingness of participants to achieve a desired goal (i.e., identify a bug) or
obtain a certain good during an experiment by mimicking its monetary value (e.g., a
reward). Second, we employed our actual between-subject experiment to explore to what
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extent each of the three payoff functions impacts the participants’ behavior. Overall, we
primarily contribute to improving researchers’ understanding of whether and how
financial incentives can help software engineering experimentation. However, our
experiment can also help reveal whether different incentivisation schemes could improve
practitioners’ motivation. Our survey and experimental design artifacts are available for
peer-reviewing.

In total, we contribute the following in this article:

1. We find indications that different forms of financial incentives impact participants’
performance in software-engineering experiments. Due to the small sample sizes, our
results are not statistically significant, but we still observe clear tendencies.

2. We discuss what our findings imply for using financial incentives in other software-
engineering experiments, and for designing respective payoff functions.

3. We share our artifacts, including the design and results of our survey as well as
experiment in anonymous form within a persistent open-access repository (https://
osf.io/mcxed/).

Our findings can help researchers improve the validity of their software-engineering
experiments by employing financial incentives, while also shedding light into how these
can impact motivation in practice.

RELATED WORK
Experiments in software engineering are comparable to “real-effort experiments” in
experimental economics, which involve participants who solve certain tasks to increase
their payoffs. Consequently, we built on experiences from the field of experimental
economics, which involves a large amount of literature on how and when to use financial
incentives in real-effort experiments (van Dijk, Sonnemans & van Winden, 2001; Greiner,
Ockenfels & Werner, 2011; Gill & Prowse, 2012; Erkal, Gangadharan & Koh, 2018). For
instance, some findings indicate gender differences regarding the impact of incentivization
schemes, which we have to consider during our experiment. In detail, research has shown
that men choose more competitive schemes (e.g., tournaments, performance payments).
Similarly, participants with higher social preferences select such competitive schemes more
rarely (Niederle & Vesterlund, 2007; Dohmen & Falk, 2011). We considered such factors
when analyzing the results of our experiment (e.g., comparing gender differences if the
number of participants allows).

Unfortunately, there is much less research on incentivization schemes in software-
engineering experimentation.Mason &Watts (2009) have analyzed the impact of financial
incentives on crowd performance during software projects using online experiments. The
results are similar to those in experimental economics, but the authors also acknowledge
that they did not design the incentives to mimic the real world or to improve the
participants’ motivation. Other studies have been concerned with the impact of payments
on employees’ motivation (Sharp et al., 2009; Thatcher, Liu & Stepina, 2002), job
satisfaction (Klenke & Kievit, 1992; Storey et al., 2021), or job change (Burn et al., 1994;
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Hasan et al., 2021; Graziotin & Fagerholm, 2019). For instance, Baddoo, Hall & Jagielska
(2006) conducted a case study and found that developers perceived wages and benefits as
an important motivator, but they did not connect payments to objective performance
metrics. None of the studies we are aware of decomposed payments or wages into specific
components (e.g., performance-dependent vs. performance-independent). So, the
effectiveness of different payoff schemes on developers’ performance remains unclear.

Software-engineering researchers have investigated the motivations of open-source
developers to a much greater extent (Gerosa et al., 2021; Hertel, Niedner & Herrmann,
2003;Hars & Ou, 2002; Ye & Kishida, 2003;Huang, Ford & Zimmermann, 2021). From the
economics perspective, open-source systems represent a public good (Bitzer, Schrettl &
Schröder, 2007; Lerner & Tirole, 2003): they are available to everyone and their
consumption do not yield disadvantages to anyone else. A typical problem of public goods
is that individual and group incentives collide, which usually leads to an insufficient
provision of the good. While typical explanations for open-source development focus on
high intrinsic motivation to contribute or learn, this is not always the case. For instance,
Roberts, Hann & Slaughter (2006) show that financial incentives can actually improve
open-source developers’ motivation (in terms of contributions). Still, financial incentives
are at least not always the predominant motivators for software developers (Beecham et al.,
2008; Sharp et al., 2009). As a consequence, we used the concept of open-source software as
a social good (Huang, Ford & Zimmermann, 2021) as an extreme example (i.e., the
developers help solve a social problem, but do not receive a payment) for designing one
payoff function in our experiment.

STUDY PROTOCOL
As explained previously, our study involved two data-collection processes, a survey and a
laboratory experiment. In Table 1, we provide an overview of our intended study goals
based on the Peer Community In Registered Reports (PCI RR) (https://rr.
peercommunityin.org/) study design template, which we explain in more detail in this
section. Our study design was based on guidelines for using financial incentives in
software-engineering experimentation (Krüger et al., 2024) and has received approval from
the local Ethics Review Board of the Department for Mathematics and Computer Science
at Eindhoven University of Technology, The Netherlands, on October 24, 2022 (reference
ERB2022MCS21).

Survey design
Goal
With our survey, we aimed to explore i) which payment components (e.g., wages only, bug
bounties) are most applied (MA) in practice and ii) which payment components are most
preferred (MP) by practitioners. We display an overview of these payment components
with concrete examples in Table 2. Our intention was to understand what is actually
employed compared to what would be preferred as a payment schema to guide the design
of our experiment.
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Structure
To achieve our goal, we created an online questionnaire with the following structure (cf.
Table 3). At first, we welcomed our participants, informing them about the survey’s topic,
duration, and their right to withdraw from our experiment at any point in time without
any disadvantages. Furthermore, we asked for written consent to collect, process, and
publish the data in anonymized form. To allow for questions, we provided the contact data
of one author on the first page. Then, we asked about each participant’s background to
collect control variables, for instance, regarding their demographics, role in their
organization, the domain they work in, and experience with code reviews. These
background questions allow us to monitor whether we have acquired a broad sample of
responses from different organizations, and thus on varying practices. Our goal was to
mitigate any bias caused by external variables, such as the organizations’ culture. Also, we
discarded the answers of one participant who had no experience with code reviews. Based
on the participants’ roles, the online survey showed the questions on the payment
structures in an adaptive manner. We designed these questions as well as their answering
options based on established guidelines and our experiences with empirical studies in
software engineering (Siegmund et al., 2014; Nielebock et al., 2019; Krüger et al., 2019).

To explore the payment components (target variables), we displayed the ones we
summarize in Table 2. We used a checklist in which a participant could select all
components that are applied in their organization. Each selected component had a field in
which the participant could enter a percentage to indicate to what extent that component
impacted their payment (e.g., 80% wage and 20% bug bounty). Then, we presented the
same checklist and fields again. This time, the participant should define which subset of the
components they would prefer to contribute with what share to the payment. While we

Table 2 List of components of payment we asked about in our survey to design payoff functions for the experiment. Note that the term check
refers to participants selecting or deselecting a line of code during our experiment (i.e., marking them as buggy or correct as can be seen in Fig. 1).

Payment component Example Variable

Not performance-based

Hourly wage Payment for hours spent on code review wage

Payment per task Fixed payment for conducting a code review paymentfix

Others Specified by participants

Performance-based

Reward for completing review Bonus for finding all bugs rewardcomplete

Reward for quality Bonus for correctly found bug (e.g., bug bounty) rewardquality

Reward for time Bonus for performing reviews fast rewardtime

Reward for organization’s performance Bonus provided based on the organization’s profits rewardshare

Penalty for low quality Penalty for mistakes within a certain period (e.g., missed bugs) penaltyquality

Penalty for checks Penalty for marking lines of code in the experiment penaltycheck

Penalty for required overtime Penalty for not completing within working hours penaltytime

Others Specified by participants
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presented this second list as is to any management role (e.g., project manager, CEO), we
asked software engineers (e.g., developer, tester) to decide upon those components from
the perspective of being the team or organization lead. To prevent sequence effects, we
randomized the order in which the two treatment questions occurred (applied and
preferred). Finally, we asked each participant to indicate how many hours per week they
worked unpaid overtime—which represents a type of performance penalty for our payoff
functions—and allowed them to enter any additional comments on the survey.

Sampling participants
We invited personal contacts and collaborators from different organizations, involving
software developers, project managers, and company managers. Note that we excluded
self-employed or freelancer developers who typically ask for a fixed payment for a specific
task or project. In addition, we distributed a second version (to distinguish both
populations) of our survey through our social media networks. In consultation with the
PCI Recommender (December 6, 2022), we surveyed an additional sample of eight
employees from a company to obtain a larger sample size. For this additional sample, we
translated the questionnaire into German. We tested whether there are differences between
the samples regarding our variables of interest. If the MA and MP incentives were identical
in all samples, we would have collapsed the data. Otherwise, we would have built on the
sample of our personal contacts only. This allowed us to have a higher level of control over
the participants’ software-engineering background, and their experience with code
reviews.

Our goal was to acquire at least 30 responses to obtain a reasonable understanding of
applied and preferred payments. Since we did not evaluate the survey data using inferential
statistics, we based our sample-size planning on the limited access to a small, specialized

Table 3 List of variables we checked in our survey.

Variable Description Operationalization

Control variables

Demographics Age, gender, living country, highest level of education Nominal (single-choice list)

Role Participant’s role in their organization Nominal (single-choice list)

Experience Years of experience in software development and code reviewing 6-level Likert scale (<1 – >15)

Frequency Current involvement in software development and code reviewing 5-level Likert scale (none at all – daily)

Domain Domain of the participant’s organization nominal (single-choice list)

Size of organization Number of employees 5-level Likert scale (<21 – >200)

Size of team Number of members in participant’s team (if applicable) 6-level Likert scale (1 – >50)

Development process Whether agile or traditional development processes are employed � agile � non-agile

Target variables

MA/MP incentives List of payment components that can be selected (cf. Table 2) Nominal (checklist)

MA/MP percentage Percentage to weigh the payment components chosen before Continuous (0–100%)

Working hours per week Weekly working hours according to the participant’s contract Continuous

Unpaid overtime Potential unpaid overtime of employees in proportion to working hours per week Ratio

Note:
MA, most applied; MP, most preferred.
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number of potential participants. Note that we did not pay incentives for participating in
the survey. We expected that the survey would take 10 min at most, and did verify the
required time and understandability of the survey through test runs with three PhD
students from our work groups.

Analysis plan

To specify the payoff functions for our experiment, we considered the absolute frequency
of combinations of different payment components. Precisely, to identify the MA and MP
combinations, we chose the respective combination that was selected by the largest
number of respondents (i.e., modal value). For these two combinations, we computeed the
mean values for their weights. We performed a graphical-outlier analysis using boxplots
(Tukey, 1977), excluding participants with extreme values (i.e., three inter quartile ranges
above the third quartile or below the first quartile). As an example, assume that most of our
participants would state to prefer the combination of fixed wages (with a weight of 75% on
average) and bug bounties (25% on average). Then, we would define a cost function as
0:75 � paymentfix þ 0:25 � ðbugscorrect � rewardqualityÞ.

Threats to validity
Our survey relied mostly on our personal contacts, which may have biased its outcomes.
We mitigated this threat, since we have a broad set of collaborators in different countries
and organizations. Moreover, defining the “ideal” payoff function for practitioners may
pressure the participants, is hard to define (e.g., considering different countries,
organizational cultures, open-source communities, or expectations), and challenging to
measure (e.g., what is preferred or efficient). However, this is due to the nature of our
experiment and the property we study: financial incentives. Consequently, these threats
remain and we discuss their potential impact, which can only be mitigated with an
appropriately large sample population.

Laboratory experiment
Goal
After eliciting which payoff functions are used and preferred in practice, we conducted our
actual experiment to measure the impact of different payoff functions in software-
engineering experiments. We focused on code reviews and bug identification in this
experiment, since these are typical tasks in software engineering that also involve different
types of incentives. So, we aimed to support software-engineering researchers by
identifying which payoff functions can be used to improve the validity of experiments.

Treatments

As motivated, we aimed to compare four treatments to reflect different payoff functions
that stemmed from our survey and established research. While we were able to define the
payoff functions for the “No Performance Incentives Treatment” (NPIT) and “Open-
Source Incentives Treatment” (OSIT) in advance, we needed data from our survey to
proceed with the “MP Incentives Treatment” (MPIT) and “MA Incentives Treatment”
(MAIT). However, we did a priori describe the method we would use to derive the payoff

Bershadskyy et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2650 9/34

http://dx.doi.org/10.7717/peerj-cs.2650
https://peerj.com/computer-science/


functions for those treatments. Note that some treatments could yield the same payoff
function (i.e., NPIT, MAIT, and MPIT). It is unlikely that all three payoff functions would
be identical, but we merged those that were (i.e., NPIT and MAIT) and reduced the
number of treatments accordingly (see Table 2 for the variable names):

No Performance Incentives Treatment (NPIT): For NPIT, we provided a fixed payment
(i.e., 10 €) that was payed out at the end of an experimental session. So, this treatment
mimics a participation fee for experiments or fixed wages for the real world. Consequently,
the payoff is independent of a participant’s actual performance. Overall, the payoff
function (PF) for this treatment is:

PFNPIT ¼ paymentfix:

Open-Source Incentives Treatment (OSIT): Again, this treatment does not depend on
our survey results, but builds on findings from the software-engineering literature on the
motivation of open-source developers (Gerosa et al., 2021; Hertel, Niedner & Herrmann,
2003; Hars & Ou, 2002; Ye & Kishida, 2003; Huang, Ford & Zimmermann, 2021). We
remark that we focused particularly on those developers that do not receive payments (e.g.,
as wages or bug bounties), but work for free. In a simplified, economics perspective, such
developers still act within a conceptual cost-benefit framework (i.e., they perceive to obtain
a benefit from working on the software). We built on the induced-value method (Weimann
& Brosig-Koch, 2019) from experimental economics to mimic this cost-benefit framework
with financial incentives to derive the OSIT treatment. Besides a participation fee, we
involved a performance-based reward for correctly identifying all bugs to resemble goal-
oriented incentives (e.g., personal fulfillment of achieving a goal or supporting open-source
projects). Furthermore, we considered the opportunity costs of working on open-source
software (i.e., less time for other projects and additional effort for performing a number of
checks). Overall, the payoff function (PF) for this treatment is:

PFOSIT ¼ paymentfix þ rewardcomplete � time � penaltytime � checks � penaltychecks:

MA Incentives Treatment (MAIT): Using our survey results, we could identify a payoff
function that represents what is mostly applied in practice. We would then derive a payoff
function as explained in “Survey Design”. However, we found that the survey results led to
the same function as for NPIT, which is why we did not use a distinct MAIT in our actual
experiment.

MP Incentives Treatment (MPIT): We used the same method we used for MAIT to
define a payoff function for MPIT. In this case, the developers preferred a fixed payment
with an additional quality reward that is based on their organization’s performance:

PFMPIT ¼ paymentfix þ rewardquality � rewardshare:
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Note that these payoff functions cannot be perfect, but they are mimicking real-world
scenarios, and thus are feasible to achieve our goals.

We used the same code-review example for all treatments to keep the complexity of the
problem constant. For all treatments, we calibrated the payoff function so that the expected
payoff for each participant in and between treatments was approximately the same (i.e.,
around 10 €). Implementing similar expected payoffs avoids unfairness between
treatments, and ensures that performance differences are caused by different incentive
schemes and not the total size of the payoff. After the treatment, we gathered demographic
data from the participants (e.g., age, gender) and asked for any concerns or feedback. We
estimated that each session of the experiment would take 45 min.

Code example
We selected and adapted three different Java code examples (i.e., limited calculator, sorting
and searching, a Stack), the first from the learning platform LeetCode (https://leetcode.
com) and the other two from the “The Algorithms” GitHub repository (https://github.
com/TheAlgorithms/Java). To create buggy examples, we injected three bugs into each
code example by using mutation operators (Jia & Harman, 2011). Note that we partly
reworked the examples to make them more suitable for our experiment (e.g., combining
searching and sorting), added comments at the top of each example explaining its general
purpose, and kept other comments (potentially adapted) as well as identifier names to
improve the realism. We aimed to limit the time of the experiment to avoid fatigue and
actually allow for a laboratory setting, and thus decided to use only one example. To select
the most suitable subject system for our experiment, we performed a pilot study in which
we measured the time and performance of the participants. In detail, we asked one M.Sc.
student from the University of Glasgow who has worked as a software practitioner in
industry and four PhD students from the University of Zurich to perform the code reviews
on the buggy examples. Overall, each example was reviewed by three of these participants.
Our results indicated that the sorting and searching example would be most feasible (i.e.,
�12 min., 4/9 bugs correctly identified, Five false positives), considering that the task
should neither be too easy nor to hard, the background of the pilot’s participants and the
potential participants for our experiment, as well as the examples’ quality. The other two
examples seemed too large or complicated (i.e., �14 min., 2/9 bugs; four false positives;
�8 min., 5/9 bugs, eight false positives), which is why we decided to use the sorting and
searching example (available in our artifacts) (https://osf.io/mcxed/). We remark that none
of the participants from this pilot study was involved in our actual experiment. In Fig. 1, we
display a screenshot of the sorting and searching code example we showed to the
participants in the lab.

Sampling participants
We aimed to recruit a minimum of 80 participants (20 per treatment) by inviting students
and faculty members of the Faculty for Computer Science of the Otto-von-Guericke
University Magdeburg, Germany. In 2019, 1,676 Bachelor and Master students as well as
roughly 200 PhD students had been enrolled at the faculty, and 193 (former) members of
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Figure 1 Screenshot of the code example as we showed it to the participants. The checkboxes in front of each line allowed the participants to
check buggy lines of code. Note that we did not show the comments indicating the implemented bugs (i.e., in lines 16, 21, and 38). The blue boxes
(not displayed to participants) indicate the Areas of Interest (AOIs) that we used for the eye-tracking analysis.

Full-size DOI: 10.7717/peerj-cs.2650/fig-1
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the faculty were listed in the participant pool of the MaXLab (https://maxlab.ovgu.de/en/)
at which we conducted the laboratory experiment. We focused on recruiting participants
who passed the faculty courses on Java and algorithms (first two semester) or equivalent
courses to ensure that our participants had the fundamental knowledge required for
understanding our sorting and searching example. If possible (e.g., considering finances,
response rate), we planned to invite further participants (potentially from industry and
other faculties) to strengthen the validity of our results. Yet, it was not realistic to have
more than 35 participants per treatment, due to the number of possible participants with
the required background on software engineering. Applying the Holm-Bonferroni
correction for multiple hypothesis testing, we calculated the power analysis for the strictest
corrected a of 0:0083 (0:05=6) in the range between 20 and 35 participants per treatment.
A Wilcoxon-Mann-Whitney test for independent samples with 20/35 participants per
group (N = 40/70) would be sensitive to effects of d ¼ 1:33=1:08 with 90% power
(a ¼ 0:0083). This means that our experiment would not be feasible to reliably detect
effects smaller than Cohen’s d ¼ 1:33=1:08 within the range of realistic sample sizes. In
Fig. 2, we illustrate this relation between effect and sample size. Overall, it was unlikely that
we would identify statistically significant differences. Note that we focused on the Otto-
von-Guericke University, since the MaXLab is located there. Regarding the Covid
pandemic, it was possible to conduct sessions only with reduced numbers of participants
(i.e., 10 instead of 20). We were not aware of any theory or previous experiments on the
effect of financial incentives on developers’ performance during code reviews or other
software-engineering activities. As a consequence, we could not confidentially define what
the smallest effect size of interest would be.

Hypotheses
Reflecting on findings in software engineering as well as other domains, we defined two
hypotheses (H) we wanted to study in our experiment:

H1 Participants without performance-based incentivization (NPIT) have on average a
worse performance (lower value in the F1-score, explained shortly) than those with
performance-based incentivization (e.g., OSIT, MAIT, MPIT).

H2 The experimental performance of participants under performance-based
incentivization (e.g., OSIT, MAIT, MPIT) differs between treatments.

Besides analyzing these hypotheses, we also compared the behavior (e.g., risk taking)
and performance between all groups to understand which incentives have what impact.
Moreover, we used eye trackers to explore fixation counts, fixation lengths, and return
fixations. This allowed us to obtain a deeper understanding of the search and evaluation
processes during code reviews. Also, it enabled us to investigate potential differences in eye
movements depending on the incentivization. More precisely, we intended to follow
similar studies from software engineering (Abid et al., 2019) to explore how our
participants read the source code, for instance, did they focus on the actually buggy code,
what lines were they reading more often, or which code elements did they focus on to
explore bugs? We report all findings from the eye-tracking data as exploratory outcomes.
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The eye-tracking data is preprocessed by the firmware of Tobii (Version 1.181.37603)
using the Tobii I-VT (fixation) filter.

Metrics
The performance of our participants was primarily depending on their correctness in
identifying bugs during the code review. Since this can be expressed as confusion matrices,

we decided to implement the F1-score defined as 2TP
2TPþFPþFN

� �
as the only outcome

measure to evaluate our hypotheses. For our experiment, true positives (TP) refer to the
correctly identified bugs, false positives (FP) refer to the locations marked as buggy that are
actually correct, and false negatives (FN) refer to the undetected bugs. Note that our
participants were not ware of this metric (they only knew about the payoff function) to
avoid biases, and any decision based on the payoff function are reflected by the F1-score
(e.g., taking more risks due to missing penalties under NPIT). So, this metric allowed us to
compare the performances of our participants between treatments considering that they
motivate different behaviors, which allowed us to test our hypotheses. In summary, our
dependent variable was the F1-score, our independent variable was the payoff function, and
we collected additional data via a post experimental survey (e.g., experience, gender, age,
stress) as well as eye-tracking data for exploratory analyses.

Experimental design
Fundamentally, we planned to employ a 4 × 1 design. However, since we merged the
treatments NPIT and MAIT after our survey, we ended up with a 3 × 1 design). For each

Figure 2 Relation between sample size and Cohen’s d for comparing two groups via the Wilcoxon-
Mann-Whitney test, assuming a normal distribution with a ¼ 0:0083 and statistical power of 0.9.

Full-size DOI: 10.7717/peerj-cs.2650/fig-2
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treatment, we only changed the payoff function. We allocated participants to their
treatment at random, without anyone repeating the experiment in another treatment. On-
site, we could execute the experiment at the experimental laboratory MaXLab of the Otto-
von-Guericke University using a standardized experimental environment. We employed a
between-subject design measuring the participants’ performance and measured the eye
movement of four participants (restricted by number of devices) in each session using eye
trackers (60 Hz Tobii Pro Nano H). Note that we could identify any impact wearing eye-
trackers may have had on our participants during our analysis. However, it is not likely
that they had an impact, because this type of eye trackers is mounted to the screen and
barely noticeable, not a helmet the participants have to wear. The procedure for each
session was as follows:

Welcome and experimental instructions: After the participants of a session entered the
laboratory, they were randomly allocated to working stations with the experimental
environment installed. Moreover, four of them were randomly selected for using eye
trackers. To this end, we already stated in the invitation that eye tracking would be
involved in the experiment. If a participant nonetheless disagreed to participate using eye
trackers, we excluded them from the experiment to avoid selection bias. Once all
participants were at their places, the experimenter began the experiment. The participants
received general information about the experiment (e.g., welcoming text), information
about the task at hand (code review), an explanation on how to enter data (e.g., check box),
and the definition of their payoff function for the experiment (with some examples).

Review task: All participants received the code example with the task to identify any
bugs within it. Note that the participants were not aware of the precise number of bugs in
the code. Instead, a message explained that the code does not behave as expected when it is
executed. At the end of the task, we could have incorporated unpaid overtime as a payment
component by asking participants to stay for five more minutes to work on the task.

Post experimental questionnaire: After the experiment, we asked our participants a
number of demographic questions (i.e., gender, age, study program, study term,
programming experience). We further applied the distress subscale of the Short Stress State
Questionnaire (Helton, 2004) to measure arousal and stress of the participants. Eliciting
such data on demographics and arousal enabled us to identify potential confounding
parameters.

Payoff procedure: After we collected all the data, we provided information about their
performance and payoff to the participants by displaying them on their screen. We payed
out these earnings privately in a separate room in cash immediately afterwards.

Analysis plan
To analyze our data, we employed the following steps:

Data cleaning: The experimental environment stored raw data in CSV files. We did not
plan to remove any outliers or data unless we would identify a specific reason for which we
would believe the data could be invalid, which involved primarily two cases. First, it may
have happened that the eye-movement recordings of a participant have a low quality (i.e.,
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<70% gaze sample). Gaze sample is defined as the percentage of the time that the eyes are
correctly detected. Since we used eye tracking only for exploratory analyses, we would not
have replaced participants just because the calibration was not good enough. Moreover, the
participants were not aware of the quality and could simply continue with the actual
experiment. However, we excluded their eye-tracking data from our exploratory analysis.
Second, we would have excluded participants if they violated the terms of conduct of the
laboratory. While this case was unlikely, we would have tried to replace these participants
to achieve the desired sample sizes before data cleaning. Fortunately, neither of such cases
occured.

Descriptive statistics: We used descriptive statistics for the demographic, dependent,
and independent variables for each treatment by, reporting means and standard deviations
of the respective variables.

Observational descriptions: Since sole statistical testing is often subject to
misinterpretation and not recommended (Wasserstein & Lazar, 2016;Wasserstein, Schirm
& Lazar, 2019; Amrhein, Greenland & McShane, 2019), we focused on describing our
observations. For this purpose, we started with reporting the results we obtained, plotting
suitable visualizations, and identifying patterns within these. The statistical tests helped us
to improve our confidence in these observations.

Inferential statistics: For our analysis, we focused on performance (i.e., F1-score). We
first checked whether the assumptions required for parametric tests (e.g., normality) are
fulfilled, and if not proceeded with non-parametric tests (i.e., Wilcoxon-Mann-Whitney
test). Since we were interested in all possible differences between the three treatments, we
had to conduct all pairwise treatment tests. For the significance analyses, we applied a
significance level of p < 0:05 and corrected for multiple hypotheses testing using the
Holm-Bonferroni method. Although the share of participants who used eye trackers was
constant among all treatments, and thus should not affect treatment effects, we further
checked whether the presence of eye trackers affected performance. To increase the
statistical robustness, we also conducted a regression analysis using the treatments as
categorical variables and NPIT as base. As exogenous variables, we included: age, gender,
experience, and arousal of the participants. In contrast to the preregistered tests, we discuss
these results as exploratory outcomes.

Based on these steps, we obtained a detailed understanding of how different
incetivization schemes impact the performance of software developers during code review.

RESULTS
In this section, we first report the results of our survey that we used to motivate the
incentive structures in our experiment, and then the results from the experiment itself.

Survey
In line with our Stage 1 registered report (Krüger et al., 2022), we obtained a total of 39
responses to our survey. After excluding those respondents who did not provide responses
for MAIT or MPIT, the final sample size was 30 respondents. Before we proceeded, we first
checked whether the MAIT and MPIT were identical in all three sub-samples (personal
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contacts, social media, contacted company). We found that the components for MAIT
were identical across all three samples. For MPIT, we identified a tie in the social media
and the company samples between the combination “monthly fixed salary + company
bonus” and “monthly fixed salary only.” Yet, in the personal contacts sample, the
combination of fixed salary and company bonus was the sole first rank. Due to the small
sample size, significance tests for differences in the samples are not meaningful. Therefore,
we decided that it would be useful to pool all three sub-samples. We display the absolute
frequencies of the payment components in the survey in Table 4. Based on the responses,
we selected the two combinations (MAIT and MPIT) that were most frequently chosen by
the participants. Note that, particularly with regard to the desired payment components,
many different combinations were chosen from the components listed in the survey. We
only took the most frequently selected combinations into account. Therefore, the following
numbers differ from the absolute frequency of the selected components in Table 4.

We derived the following from our survey results. Regarding the MA combination, 15
respondents indicated receiving only an hourly or monthly fixed wage. The second most
frequently applied combination in our sample was a fixed wage plus a bonus for company
performance (six). The remaining participants stated various other combinations, for
instance, task-related payment (two) or a combination of fixed wage plus a bonus for their
own performance. Based on this, the MAIT should also be a fixed payment, which means
that the incentive scheme would be the same as in NPIT. Therefore, we decided to merge
these two groups in our experiment. In contrast, the MP incentive components were a
combination of a fixed wage and a company-performance-based bonus (seven). The
second most preferred payment scheme was a fixed wage only (six), followed by different
other combinations, such as a bonus for the quality of own work accompanied by a bonus
for company performance (two). The most preferred combination (i.e., fixed wage plus
company performance) was stated by seven respondents, with five of them also defining
their preferred mix of shares of fixed wage and company bonuses. The mean value of this
preferred share is 83% for fixed wage and 17% for company bonus. This means that the

Table 4 Comparison of the MA and MP payment components.

Payment components MA MP

Hourly wage (payment for hours spent on a task) 24 16

Payment per task (fixed payment for conducting a task, independent of the duration, e.g., freelancers) 2 0

Bonus for completing a task (e.g., finding all bugs) 0 3

Bonus for quality of own work (e.g., for each correctly identified bug) 0 12

Bonus for performing tasks fast 0 9

Bonus linked to company performance 12 16

Malus for low quality (penalty for mistakes within a certain period, e.g., missed bugs) 0 0

Malus for slow work (penalty for spending too much time on a task) 0 0

Mean overtime (hours) 1.34 0.62

Others (please indicate) 1 1

Note:
The values represent absolute frequencies, except for “overtime,” which is measured in hours.
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fixed wage should be the major component of the total wage. We used this information to
calculate the payoff function for MAIT in our experiment.

To summarize, mostly fixed payments and bonuses are applied in practice. However,
our participants would also like good performance to be represented in payoffs, for
instance, regarding the company’s success or the quality of their own work.

Finally, we present the demographics of our survey respondents in Table 5. The mean
age of the respondents was 37.20 years (standard deviation: 8.32 years) and three were
female. Our respondents indicated that they worked for 38.64 h per week on average
(standard deviation: 4.54 h), and the majority (17) was employed in larger companies with
a minimum of 200 employees. Most of our respondents were programmers (12), worked in
Germany (20), and used agile methods (25). The experience in programming among the
respondents varied, ranging from less than a year to over 10 years, with the frequency of
programming ranging from once a month to daily. Regarding the educational background,
our respondents had a wide range of different degrees. There was one respondent who
stated that they had no experience in code reviews. We did not include the answers of this
respondent regarding MAIT and MPIT in our analysis (yet, its inclusion would not have
changed the results).

Experiment
Preregistration analysis
Due to the results of our preregistered survey, we implemented only three treatments
instead of the originally planned four, since MAIT and NPIT turned out to be the same in
terms of the components involved. In line with the methods for incentivization from
experimental economics by Smith (1976), we designed three payoff functions that fulfill the
criteria of salience, monotonicity, and dominance. This means that all subjects knew a
priori how their payoff depends on their behavior in the experiment (salience), the chosen
incentive (i.e., money) is better whenever there is more of it (monotonicity), and the total
size of the expected payoff is high enough to dominate other motives of behavior like
boredom (dominance). Overall, we derived the following concrete values for our three
payoff functions (see “Laboratory Experiment” for the respective variables).

For MPIT, we used the information from our survey that suggested an 83% to 17%
proportion between fixed and team-dependent-bonus payment to be preferred by our
respondents. As a team we considered groups of more than two participants in MPIT
within an experimental session. All participants were saliently informed that their payoff
will depend on the average performance of the other participants in their session (salience).
We approximated this proportion between fixed and team-dependent-bonus by making
the average number of bugs found in a team within a session contribute an additional 10%
of the fixed payment. Concretely, with the fixed amount of 25.00 €, participants received an
additional x � 2:50 V whenever the team found x bugs on average. This means, that when
participants within a team find on average two bugs out of three, we are very close to the
preferred allocation of fixed and performance-dependent components.

For OSIT, we used the induced value method (Smith, 1976). Our main assumption for
the payoff function was that for open-source developers, finishing their open-source
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Table 5 Overview of the 30 survey respondents’ demographics.

Variable Value Responses

Company size (employees) >200 17

100–200 10

20–50 2

1–20 1

Role Programmer/Developer 12

Project lead 4

Software architect 4

Manager 3

Researcher 2

Tester 2

Consultant 1

IT staff 1

Product owner 1

Country Germany 20

n/a 3

Turkey 3

Sweden 2

Switzerland 1

United Kingdom 1

Project management process Agile 25

Non-agile 4

n/a 1

Programming experience (years) <1 1

1–2 2

>2–5 4

>5–10 10

>10 9

n/a 4

Frequency of programming Not at all 2

About once a month 6

About once a week 4

About once a day or more often 15

n/a 3

Education College/2-year degree or equivalent 1

Bachelor in computer science 5

Bachelor in STEM 1

Master in computer science 9

Master in STEM 4

PhD or higher title in computer science 3

PhD or higher title in STEM 2

n/a 6
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project (or a task therein) is highly valuable. We implemented this assumption by offering
a very high bonus if all bugs were found correctly (i.e., goal achieved). However, open-
source developers’ motivation does not depend solely on task fulfillment, meaning that
there should be a performance-independent component. Also, working on a project costs
time that could be spent otherwise (e.g., on the job or other projects). We implemented
these two assumptions through a fixed payment and by subtracting money per time unit
spent in the experiment. The reduction per time unit should not be too high, as we were
not aware of any prior literature indicating how to balance this component. Yet, it is
necessary to approximate this continuous decision of open-source developers. Finally, we
implemented a penalty for submitting marked lines of code for two reasons: First, this
penalty mimics the real world where thinking that something is a bug that is not, costs time
(e.g., looking for unnecessary solutions). Second, the penalty ensures that it is less attractive
for participants to simply mark all lines of code, since doing so would mean they will find
all bugs and get the bonus. Therefore, the size of this penalty has to be considered jointly
with the size of the payoff for finding all bugs.

For NPIT, there was only a fixed amount of money for taking part in the experiment.
Finally, these considerations raised the question of how high the payoffs had to be to be
dominant, while the average expected payoff should be similar across all treatments (i.e.,
(30 €). We drew estimates on which and how many bugs would be found in what time
from our pilot experiment (cf. “Laboratory Experiment”). In our case this led to the
following payoff functions:

PFNPIT ¼ 30V (1)

PFMPIT ¼ 25Vþ 2:5
V

bug
� average number of bugs found in team (2)

PFOSIT ¼ 20Vþ 30V if all bugs found�min: spent � 0:2 V

min:
� checks done � 1 V

check
: (3)

In the following, we first present the descriptive statistics for our treatments (cf.
Table 6). For our confirmatory analysis, we did not have to exclude any participants from
our experiment. Following the preregistered analysis plan, we disclose that out of 31
participants with eye-tracking devices, we had to exclude seven for our exploratory analysis
due to either insufficient gaze detection or insufficient calibration results. Since these
participants’ remaining data was still valid, we removed only their data for the exploratory
eye-tracking analysis. Unfortunately, we did not achieve our goal of 30 participants per
treatment, but only 22 to 23. While this meant less statistical strength, we nonetheless
obtained important insights into the participants’ behavior.

According to our registered report, we focused on the F1-score as the measure of
participants’ performance. As our experimental data does not fulfill the assumptions for a
parametric test (Shapiro-Wilk test, NPIT: p-value < 0.01, OSIT: p-value < 0.01, MPIT:
p-value < 0.01), we proceeded with the Wilcoxon-Mann-Whitney test for our statistical
tests. Adjusted p-values (padjusted) stem from the Holm-Bonferroni correction. To
investigate H1 (cf. Table 1), we compared NPIT with OSIT and MPIT, respectively.
Despite the notable differences in the F1-scores (0.26 vs. 0.16 and 0.15), our statistical tests
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indicate no significant result (NPIT-OSIT: p-value = 0.896, padjusted > 0.99), NPIT-MPIT:
p-value = 0.923, padjusted > 0.99), which is in large part due to our hypothesis stating that
participants would perform better when performance incentives are in place. Instead, we
see indications for the opposite. This is a surprising result, and we will provide some
insights on possible explanations in the exploratory analysis. With respect to the two
performance-dependent treatments (MPIT, OSIT), we also see no significant differences
with respect to the F1-score (p-value = 0.796, padjusted > 0.99).

As the last step of our preregistered analysis plan, we conducted a regression analysis.
The results of the Tobit regression with limits at 0 and 1 (cf. Table 7) mostly confirm our
previous findings (performance in NPIT is non-significantly better than in OSIT and
MPIT). Yet, adding a parameter (completion Time) that we did not preregister in model
(3) indicates the importance of the completion time on the F1-scores. The longer the
participants stayed in the experiment, the higher was their F1-score. We will address the
topic of completion time in more detail in the following exploratory analysis.

Exploratory analysis
As we had to decide on one specific variable to measure performance, we chose the F1-
score—because it balances the different types of correct and wrong assessments. However,
this decision is usually made with respect to the severity of different types of errors, for
instance, a false negative and false positive need not be of equal importance for the
company. Therefore, we now display the differences in treatments for all four categories:
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). As
we can see in Fig. 3, this data indicates substantial differences between some of the metrics.
For example, participants in OSIT had a low value of TP and a high value of FN
(�xTP ¼ 0:59, �xFN ¼ 2:41).

Next, we focus on another important variable: the completion time. Throughout our
experiment, the participants were allowed to submit their code as soon as they wanted. In
Fig. 4, we display the distribution of completion times in all treatments. Without
performance incentives, the participants spent on average 16 min and 22 s on the
experiment. Implementing OSIT decreased the time to 12 min and 25 s (Wilcoxon-Mann-
Whitney test, p-value = 0.170, padjusted = 0.262). In contrast, in the MPIT treatment,

Table 6 Descriptive summary of the participants in each treatment.

NPIT OSIT MPIT

Average age 23.59 25.00 25.04

Male/Female/Diverse 17/5/0 18/4/0 16/7/0

Programming years 4.46 3.82 4.00

Study duration 4.86 3.96 7.39

Programming courses 4.41 3.32 3.91

Programming experience 5.82 5.68 5.00

Number of participants 22 22 23

Among these with eye-tracking 10 9 12
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participants spent more time (20 min and 39 s, Wilcoxon-Mann-Whitney test, p-value =
0.131, padjusted = 0.262). We can further see in Fig. 4 that differently applied incentives
(MPIT vs. OSIT) can lead to different levels of effort in terms of the time spent in the
experiment (Wilcoxon-Mann-Whitney test, p-value = 0.005 padjusted = 0.015). In total, the
differences in completion time are substantial between the treatments, even though they
are not always statistically significant.

Table 7 Results of the Tobit regression analysis.

Dependent variable:

F1

(1) (2) Exploratory (3)

TreatmentOSIT −0.171 (0.132) −0.144 (0.138) −0.054 (0.136)

TreatmentMPIT −0.134 (0.128) −0.146 (0.137) −0.208 (0.134)

Age −0.004 (0.014) −0.010 (0.013)

GenderWoman 0.176 (0.122) 0.175 (0.116)

ProgrammingExperience −0.003 (0.034) −0.016 (0.033)

Engagement 0.018 (0.043) 0.042 (0.042)

Distress −0.042 (0.048) −0.060 (0.046)

Worry 0.005 (0.042) −0.005 (0.041)

CompletionTime 0.016* (0.006)

LogSigma −0.927** (0.141) −0.955** (0.141) −1.012** (0.140)

Constant 0.139 (0.094) 0.213 (0.417) 0.144 (0.399)

Notes:
* p < 0.05.
** p < 0.01.

Figure 3 Boxplots for TP, TN, FP, and FN across our treatments. Each box shows the 25% and 75%
quantiles as well as the median. The whiskers show the minimum and maximum values inside 1:5 � IQR.
Outliers are displayed as points outside of the whiskers. Full-size DOI: 10.7717/peerj-cs.2650/fig-3
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Using a post-experimental questionnaire, we further measured engagement, worry, and
stress (cf. Fig. 5). In addition to the differences we can observe in these short scales, we also
see that the self-reported engagement negatively correlates with completion times. This
implies that participants who wanted to succeed in the task hurried. While the total sample
sizes are again an issue, we observe some evidence that MPIT may have caused higher
levels of engagement, distress, and worry, which is in line with the explanation through
social pressure.

Eye-tracking analysis
Approximately half of our participants in every treatment conducted the experiment with
eye trackers. We can see no evidence that eye-tracking changed their performance
(Wilcoxon-Mann-Whitney test, NPIT: p-value = 0.702 padjusted > 0.99), OSIT: p-value =
0.277, padjusted = 0.831, MPIT: p-value = 0.535, padjusted > 0.99). After evaluating the quality
of the eye-tracking data, we had to exclude seven of 31 observations due to (1) low gaze
detection (<70%) during the whole timespan or (2) high validation accuracy (>1.5�) and
high validation precision (>1�) during the eye tracking calibration. This left us with 7/7/10
observations in NPIT/OSIT/MPIT, respectively. Still, the eye-tracking data provides us
with valuable information on the participants’ behavior.

First, we split the lines with respect to their content into three blocks, that we define as
Areas of Interest (AOI). We can see across all treatments that participants focused more on
the second AOI, which includes the code of the sorting algorithm (cf. AOI 2 in Fig. 1). This
section includes a nested for-loop and is, therefore, arguably the most complex section to
analyze in our whole example. Second, we can observe a strong negative correlation
between fixations (normalized to completion time) and F1-score. This indicates that
participants who refocused on different gaze points more often had lower F1-scores, which

Figure 4 Distribution of the completion times. The boxes show the 25% and 75% quantiles as well as
the median. The whiskers show the minimum and maximum values inside 1:5 � IQR.

Full-size DOI: 10.7717/peerj-cs.2650/fig-4
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may be interesting for further eye-tracking-based research in software engineering. The
average fixation duration for participants in OSIT (300.32 ms) is lower compared to both
NPIT (356.44 ms) andMPIT (334.58 ms), but is again not significant (OSIT-NPIT: p-value
= 0.228, padjusted = 0.456, OSIT-MPIT: p-value = 0.406, padjusted = 0.812). This indicates
that participants in OSIT spent less time focusing on one specific gaze point. Participants
in OSIT also had the highest number of fixations normalized to completion time
(�xNPIT ¼ 2:46, �xOSIT ¼ 2:76, �xMPIT ¼ 2:70), which could indicate that the time constraints
led to more but shorter fixations.

Summary
In total, our results indicate that different financial incentives can alter participants’
behavior in software-engineering experiments, sometimes in less predictable ways.
Surprisingly, the F1-score was the highest for NPIT. However, it remains arguable whether
the F1-score is the best measure since we observe different relations between our incentive
structures and different performance measures. We further recognize the completion time
as a relevant measure, for which we could see that it can be predicted by the incentive
structure and self-reported engagement. Simultaneously, the completion time seems to be
a good predictor for the F1-score. We further stress that it would have been helpful to have
a bigger sample size since our current sample size allows only very large effect sizes
(Cohen’s d > 1.16) to become statistically significant.

DISCUSSION
In this section, we discuss our key results in light of further literature in software
engineering and experimental economics. First, we focus on the results from our survey.
Second, we address our findings from the pre-registered results of our experiment. Finally,
we discuss our exploratory results.

Figure 5 Self-reported values of engagement, distress, and worry. The boxes show the 25% and 75% quantiles as well as the median. The whiskers
show the minimum and maximum values inside 1:5 � IQR. Outliers are displayed as points outside of the whiskers.

Full-size DOI: 10.7717/peerj-cs.2650/fig-5
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Software engineers like bonuses based on (Company) performance
Our survey results indicate that the most commonly applied payment scheme (i.e., fixed
wages) does not have any performance-dependent components. However, several survey
participants indicated that their employer applies bonuses dependent on company
performance (i.e., team-dependent bonuses). Further, the results indicate that a substantial
amount of software engineers would prefer performance-dependent incentives of different
types. This finding is in line with what Beecham et al. (2008) report in their systematic
literature review on the motivation in software engineering. Precisely, Beecham et al.
(2008) indicate that increased pay and benefits that are linked to performance are among
the factors that motivate software developers. Still, we cannot observe a clear picture from
our results whether a specific component dominates all others. The MP component is a
company bonus, a common element of total wages that is known to have positive effects on
performance (Bloom & Reenen, 2011; Friebel et al., 2017; Garbers & Konradt, 2014; Guay,
Kepler & Tsui, 2019). Similarly, by investigating successful IT organizations’ human
resource practices, Agarwal & Ferratt (2002) found that providing bonuses as monetary
rewards is among the practices employed to retain the best IT talent. As the number of
participants in our survey was comparatively small, we cannot derive meaningful statistics
from these numbers. Nonetheless, our results are a hint that software engineers wish for
such elements to be implemented and that they are potentially sensitive to them.

Designing financial incentives is hard, but they have an impact on
different variables
From our results, we can observe substantial differences in several important variables
used in software-engineering experimentation, such as the time participants spend on a
task or the number of bugs found/missed. These differences are meaningful in their impact
on the interpretation of experimental results. Yet, since we preregistered the F1-score as
our main dependent variable and obtained only a small sample size, the statistical analysis
of treatment effects on the F1-score does not indicate significant results. We note that the
treatment effect works in the other direction than we hypothesized (cf. “Laboratory
Experiment”): Subjects without performance incentives (NPIT) had a higher F1-score than
in MPIT or OSIT. Since this contrasts with the majority of economics literature, we now
discuss possible explanations.

First, researchers have observed that financial incentives can have detrimental effects
(Gneezy, Meier & Rey-Biel, 2011). Yet, this usually can only occur if the extrinsic
motivational effect of the incentives is not strong enough to outweigh potential losses in
intrinsic motivation. This is not a likely explanation for our experiment, in which the
participants earned 23.83 € on average within a mean duration of 16.5 min. Such a payoff is
substantially higher than the average hourly wage for student assistants at the university of
12 € per hour. Participants not being sensitive to such financial incentives would imply a
very high a priori intrinsic motivation of the participants to conduct our experiment,
which seems implausible.

Second, it is unclear whether the F1-score is the best metric for such analyses. Literature
in economics usually does not make use of F1-scores. Instead, it focuses on the effect of
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incentives on context-specific criteria (e.g., number of hours worked, number of tasks
solved, revenue, profit). However, research on the role of financial incentives on
performance in software engineering is scarce. So, we applied a widely used, generic
performance measure, the F1-score. Looking at other metrics that we captured, we do see
some typical changes in performance despite our low numbers of observations. For
example, it is in line with classical economics theory (Holmstrom & Milgrom, 1991) and
empirical findings (Hong et al., 2018; Lazear, 2000) that in a multidimensional problem
(e.g., quality and time) humans adjust towards the incentivized dimension. In this context,
it means that when time is costly, people would optimize for it and speed up. This implies
that the completion times in OSIT should be lower than in the other treatments, which is
what we observed. Further, speeding up can easily lead to overlooking bugs (FN), which we
also observed. These findings are also in line with the results of other software-engineering
experiments conducted with students. Within their controlled experiment on
requirements reviews and test-case development (Mäntylä et al., 2014) found that time
pressure led to a decrease in the number of defects detected per time unit. In another
experiment on manual testing, Mäntylä & Itkonen (2013) also observed a decreased
number of defects detected per time unit due to time pressure. Our findings also align with
developers’ behavior in real-life settings, in which short release cycles can lead to
developers trading quality for completing tasks on time. For instance, an exploratory
survey by Storey, Houck & Zimmermann (2022) at Microsoft revealed that developers are
more likely to consider productivity in terms of the number of tasks completed in a given
period and trade quality for quantity. Lastly, our eye-tracking data further supports that
time pressure was perceived by the participants and changed their behavior. For instance,
they had more fixations, but at shorter average fixation duration when facing time
pressure.

Finally, note that, especially for OSIT, it is a very complicated process to induce value in
line with real-world incentives (of open-source developers). Open-source developers can
fall in a large variety of motivation schemes, including those being paid for their work
independent of success and those working on the projects without any payment. In fact,
the motivations of open-source developers are mostly intrinsic or internalized, such as
reputation, learning, intellectual stimulation, altruism, kinship (e.g., desire to work in
development teams), and belief that source code should be open (Gerosa et al., 2021; Bitzer,
Schrettl & Schröder, 2007). The findings of a large-scale survey by Gerosa et al. (2021) point
out that, in addition to all these intrinsic factors, career development is also relevant to
many open-source software contributors as an extrinsic motivator. In our experiment, we
aimed to rebuild the incentives for open-source developers who are not getting paid by
companies and whose major incentive is to make things work (e.g., to help other people).
The way we induced this incentive scheme via a payoff function (i.e., a large value for
achieving the goal, a penalty for the time used) can cause some participants to not even try
to find all bugs—since finding all bugs may be unrealistic and time-consuming (i.e., costly).
Still, this very issue is similar to the real-life case of open source software development,
where for a single individual, it may be too unrealistic to achieve the goal alone. This may
imply that on the individual level, such incentives in fact induce a worse performance than
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a flat payment and the effectiveness of open source software engineering comes from a
large number of contributors and not from the efficiency of the individual incentives. This
would be a very interesting perspective for an experiment, yet would also require a much
larger number of observations.

Eye trackers do not threaten the experimental design
Fourth, concerning eye-tracking, we measured that our participants spent most time on
the nested for-loop of our code example. This is highly plausible, since cognitive
complexity (Campbell, 2018) is relatively high in this part of our example. Importantly,
with our setup, we did not measure any effects of having eye-trackers on participants’
measurable performance. This implies that eye-trackers pose no threats to the validity of
an experiment. However, this result should be considered with caution, due to the low
number of observations. Consequently, we strongly suggest to conduct future studies on
this matter.

THREATS TO VALIDITY
In this section, we discuss possible threats to the validity of our study. Overall, our primary
study design represented a typical controlled experiment in the lab, which improves the
internal validity to increase the trust that any differences between the groups are due to the
incentivization schemes we used. Still, the following threats to the internal and external
validity remain.

Internal validity
Our study faces some potential threats concerning the choice of the code-review task, the
incentives, and the dependent variable, which first impact internal validity, but can also
expand to the external validity. First, our code-review task had to be designed in a way that
is solvable for the participants of the experiment. Otherwise, we could not observe the
additional effort induced by the incentives through any performance metric. We designed
our task and thereby reduced this threat by conducting a pilot study with a different group
of students. The results of that pilot indicated that our task can be solved by the students,
but still required effort to solve (cf. “Laboratory Experiment”). The argument that the task
was demanding but solvable is further supported by our actual experimental data, in which
we can see that only two subjects were able to find all the bugs. This, however, was mostly
due to bug number 2, which was the hardest to spot. The other bugs were easier to find,
meaning that, for a substantial amount of participants, performance depended on effort.

Second, for incentives to work, they have to fulfill three criteria: monotonicity, salience,
and dominance (Smith, 1976). Our experiment fulfills all these criteria as the incentives
used (i.e., money) fulfill the criteria that participants prefer more of the incentive over less
(monotonicity). The incentives were also salient, meaning that participants were informed
how their decisions would influence their payoff. Moreover, the size of our payoffs is
higher than the average hourly wage for student assistants, which we can take as a
benchmark because it motivates typical students to work (dominance). So, we argue that
we mitigated this threat to the internal validity as far as possible.
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Lastly, the metric we chose to measure is another concern regarding internal validity.
Specifically, it is unclear whether the F1-score is the best metric for such an experiment. In
the data, we can observe that even in cases where the F1-score stays similar, other metrics
(e.g., TPs or time spent on the task) can vary. However, a priori there was no indication
against choosing the F1-score since it is quite an objective performance metric that weights
between different types of true and false assessments. Consequently, future experiments
with a different set of metrics can provide further insights into the impact of financial
incentives. Still, our results provide valuable insights and already indicate how financial
incentives can be used, also guiding the design of future experiments on the matter.

Looking at the average profits of the participants indicates another potential threat. Due
to the different incentivization schemes, there are significant differences regarding the
average payoffs between treatments (NPIT: 30.00 €, OSIT: 14.61 €, MPIT: 26.74 €,
p < 0.0001). Yet, note that this is neither a threat to internal validity nor an explanation for
performance differences. Specifically, it is not the average size of the realized payoff that is
important for the incentivization, but the a priori saliently presented structure. For
example, for OSIT, we observed the lowest average payoffs. However, this is the treatment
with the highest possible payoff (up to 46.80 €, as compared to a maximum of 32.50
€/30.00 € for MPIT/NPIT). This in itself is another indicator that it is not solely about the
size of the incentives, but also about their structure that matters to motivate participants.

External validity
Concerning external validity, the chosen task represents a typical exercise for practitioners.
It is evident that a single code-review task cannot depict the whole variety of tasks in the
real world, yet it represents a meaningful example. Another perspective is the choice of
participants in our study. The participants in our experiment were mostly students. We are
aware of ongoing debates on the comparability between student and professional
participants (Höst, Regnell & Wohlin, 2000; Falessi et al., 2017). Therefore, the
generalizability of our experiment towards practice may be more limited compared to
conducting it with professional developers. Yet, such an alternative experiment would
result in severely higher costs (due to paying practitioners instead of students).

Next, we focus on the external validity of the treatments we designed. The incentives in
NPIT and MPIT are related to practice, since they have occurred prominently in our
survey. In contrast, we designed the incentives for OSIT based on existing research and
personal experiences with open-source development to depict one specific type of open-
source project. Other researchers may have come up with different incentive schemes.
However, for the chosen type of project, for which it matters to achieve a certain goal, the
chosen incentives are realistic. Moreover, even if other payoff functions would have been
more realistic or appropriate, this does not threaten the goal of our experiment to compare
how different incentives impact participants’ performance. Our functions were different
enough to achieve this goal, and we actually revealed performance differences.

A last threat to the external validity concerns the representativity of our survey. This
survey was important to obtain information on possible incentive schemes in practice. To
achieve the best results, it would have been best to conduct a large-scale, representative
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survey. In contrast, our survey is based on a convenience sample of mostly men, which
may introduce biases (Zabel & Otto, 2021). Thus, the survey cannot provide generalizable
results, including, but not limited to, the incentive schemes desired by women in software
engineering (Otto et al., 2022). To increase the sample size, we interviewed eight
practitioners from one company, which further limits the representativity and
generalizability of the results. This, in turn, can imply a threat to the validity of the
incentive schemes we designed. For instance, if the MP incentives from our survey are not
the same as those of a more general sample of developers, the measured effects are less
comparable to the real world. Yet, we mitigated this threat by checking for differences in
responses from the three sub-samples, and we did not observe such differences. Also,
again, our schemes were different enough to nonetheless reason on their impact on the
performance of participants in software-engineering experiments.

CONCLUSION
In this article, we reported the results of a preregistered study (Krüger et al., 2022). We
investigated in how far financial incentives impact the performance of (student)
participants in software-engineering experiments. Doing so, we first surveyed the most
commonly applied and preferred incentive schemes, and then implemented these in a
laboratory experiment. Despite a low sample size, we observed strong effects of different
incentives concerning variables like the time participants spent on their tasks or the
number of correctly identified bugs. Yet, we did not observe significant differences
concerning the F1-score as our primary metric. In addition, we used an eye-tracking
analysis to investigate how the participants reviewed the code. Our findings indicate that
participants correctly identified the most complex part of the code and spent the largest
share of time on it. Further, our results indicate no performance differences between
participants with or without eye-tracking, which supports the use of eye-tracking in future
software-engineering studies. As the key message of our study, we found that software-
engineering experiments are impacted by how participants are incentivized. How to design
incentives to motivate the “ideal” behavior is a challenging task, though. Our contributions
provide guidance in doing so, serving as exemplars and pointing out challenges researchers
may face in this context.

Our results imply several opportunities for future work. First, different organizations
may have different perspectives on the weight of different types of errors (software in
healthcare vs. entertainment). This leads to the question of whether organizations in these
domains apply different types of incentives. Second, there may be differences between the
weights of errors between employers/managers and employees. For instance, do managers
think that certain performance schemes induce more effort while the employees think
otherwise? Research on this intersection of economics, psychology, and software
engineering topics would highly benefit the understanding of the effects of incentives in
software engineering.
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