Preparing an R Package for Open-Source Contributions: An
Experience Report on the World Wildlife Fund’s Forest Foresight

Amin Bakhshi¢, Hasrul Maruf?, Maas van Apeldoorn?, Zillah Calle”, Jonas van Duijvenbode?,
Ismay Wolft?, Yanja Dajsuren® and Jacob Kriiger®

Eindhoven University of Technology, The Netherlands

"World Wildlife Fund Netherlands, The Netherlands

ARTICLE INFO

Keywords:

Software Evolution
Community-Driven Contributions
Repository Management
Open-Source Development

ABSTRACT

Deforestation (i.e., the removal or destruction of forests by humans), particularly illegal, is a major
cause of ecological and environmental problems. To combat illegal deforestation, the World Wildlife
Fund (WWF) has developed an open-source R package to predict deforestation around the world using
machine learning. The package has been used by and customized to various countries, providing
immense value for environmental protection. However, the package was implemented by domain
experts without software engineering background, resulting in an unstructured development process,
a monolithic codebase, and a lack of documentation on processes and code. Aiming to build an open-
source community to improve and maintain the package, the WWF team decided to focus on enhancing
the accessibility and attractiveness of the codebase for newcomers. Supporting this goal, we conducted
an action-research-like project using Scrum to improve the code quality, tooling, testing, processes,
and documentation while also establishing practices to sustain and build upon these improvements. In
this article, we describe this project and share our insights into opening an R package to make it more
accessible for external open-source contributors. Our insights include guidance on communicating
design decisions to domain experts without a software engineering background and on how to train
them in software engineering practices. Further insights highlight the specific challenges of working
with R packages. Lastly, our work showcases the contributions that software engineering can make to

support environmental protection and can guide future projects in this direction.

1. Introduction

Deforestation is a serious threat to the environment, the
climate, and humans. Between 1990 and 2020, 420 million
hectares of forest have been lost globally (FAO, 2020).
Although the rate of deforestation is on a downward trend,
between 2015 and 2020, approximately 10 million hectares
of forests have still disappeared annually. Unfortunately,
even if the decline in forest loss continues, it is unlikely
that the goal of the 2021 United Nations Climate Change
Conference (COP26) of ending deforestation by 2030 will
be met (Einhorn and Buckley, 2021; FAO, 2020). The conse-
quences of current deforestation threaten more than 100,000
species, release 6.7 billion tons of CO? annually (15 to
20 % of global emissions), alter rainfall, and increase soil
erosion; leading to natural disasters (e.g., floods, droughts)
and millions of people being directly or indirectly impacted
globally (WWF, 2022; FAO, 2020; Ripple et al., 2024; Wolff
et al., 2021; Bologna and Aquino, 2020).1

Interpol (2021) estimated that around 15 to 30% of
global timber production comes from illegal logging. Simi-
larly, the International Consortium of Investigative Journal-
ists repeatedly reports on severe cases of illegal deforestation
around the world under the “Deforestation Inc.” initiative.>

B4 jduijvenbode@wwf.nl (J.v. Duijvenbode); i.d.wolffetue.nl (L.
Wolff); y.dajsurenetue.nl (Y. Dajsuren); j.krugere@tue.nl (J. Kriiger)
ORCID(S): 0009-0001-3722-5022 (M.v. Apeldoorn);
0009—0003—8922—8780(1.\Vblﬂj;0000—@002—0283—248X(J.Krﬁgeﬂ
1https://forestforesight.atlassian.net/wiki/spaces/EWS/pages/
33136/0verview
2https://wwwAicij.org/investigations/deForestation—inc/

To combat such illegal deforestation, the World Wildlife
Fund (WWF) is developing an open-source R package called
Forest Foresight.> Forest Foresight is designed to enable
users (e.g., governments, businesses, local communities,
police) to predict illegal deforestation (WWF, 2022). To
obtain reliable predictions, Forest Foresight uses machine
learning and near-real-time monitoring.

Forest Foresight was initially developed by two WWF
domain experts (fourth and fifth author) and external consul-
tants without formal software engineering training. At times,
this has resulted in the development process and code quality
to stray away from established best practices—accumulating
technical (Li et al., 2015) and process (Martini et al., 2020)
debt. This made the codebase less accessible to newcomers,
and led to some concerns when WWF decided that it would
be beneficial to attract more external contributors and build
an open-source community around Forest Foresight. To
tackle the technical and process debt, we initiated a collab-
orative project between the domain experts and a team from
Eindhoven University of Technology (TU/e). The project ran
for a bit more than nine weeks, aiming to improve Forest
Foresight’s code and process, to expand the domain experts’
knowledge on software engineering practices, as well as to
thereby facilitate contributions by external developers.

In this article, we share our experience report of con-
ducting the project and describe our insights of improving
the Forest Foresight R package to open it up for an actual
open-source community. We report our experiences from
this practical project to contribute:

3https ://github.com/ForestForesight/ForestForesight

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 1 of 15

https://forestforesight.atlassian.net/wiki/spaces/EWS/pages/33136/Overview
https://forestforesight.atlassian.net/wiki/spaces/EWS/pages/33136/Overview
https://www.icij.org/investigations/deforestation-inc/
https://github.com/ForestForesight/ForestForesight

Preparing an R Package for Open-Source Contributions

domain analysis| £ £ £V

code quality
2 :
o tooling
€ ,
§|>_) testing
9 process
£

documentation

merge

1 2 3

September 30
2024

4 5 6 7 8

weeks Decggvzlzer 4

Figure 1: Timeline of our project, structured along the interventions we planned (y axis) and the weeks in which we executed
them (x axis, Scrum Sprints along the action-research cycle). We detail how an individual Sprint looked like in Figure 2.

e Descriptions and discussions of changes we intro-
duced to address technical and process debt. Specif-
ically, we worked on reducing linter warnings, in-
troducing continuous integration, implementing unit
tests, defining review and release processes, adding
GitHub issue and PR templates, as well as creating
extensive documentation.

e Insights into how we communicated and trained the
domain experts in software engineering practices.
Most importantly, we experienced a positive impact
of interactive training sessions on communicating and
teaching best practices to domain experts.

e Impacts of R-specific challenges we faced when we in-
troduced and adjusted software engineering practices.
In detail, we experienced that the R language’s design
prohibits certain organizations of files that would be
more accessible for large projects.

We hope that our contributions help software engineers
interact with and train domain experts, providing guidance
into how to incorporate software engineering practices into
running projects and preparing these for community contri-
butions. Moreover, our insights can help researchers working
on software engineering for R, in training and education, or
in research software engineering.

The remainder of this article is structured as follows.
In Section 2, we report the conduct of our project, which
represented a mixture of Scrum and an action-research-like
process. Within Section 3, we provide a detailed description
of Forest Foresight and our initial domain analysis. After-
wards, we detail the individual interventions we performed
in Section 4 and discuss these in detail within Section 5. In
Section 6, we suggest future steps to move Forest Foresight
further ahead. Then, we discuss threats to the validity of our
experience report in Section 7 and summarize related work
in Section 8. Finally, we conclude this article in Section 9.

2. Project Conduct and Research Method

As we show in Figure 1, our project ran for a little more
than nine weeks, from September 30, 2024, until December

4, 2024. Logically, the project was highly practice-oriented
and we intermixed two processes to structure the daily work-
flow while also ensuring we could obtain valuable insights.
We show how these two processes connected within an in-
dividual Sprint and who was primarily involved in each step
in Figure 2. First, from a research perspective, we applied
an action-research-like process (Staron, 2020), including
iterative and collaborative interventions with evaluations of
their impact. However, due to the project’s practical and
short nature, we typically executed individual cycles (i.e.,
interventions) in parallel.

Second, from an organizational perspective, we applied a
Scrum process, with each intervention representing a larger
backlog item. During each Scrum Sprint of one week, the
core developers from TU/e (first three authors) performed
research, planned their actions, and executed as well as
evaluated these actions in collaboration with the domain
experts—essentially refining the product backlog to define
and execute a feasible Sprint backlog. During a Sprint, the
TU/e core developers and domain experts reviewed each
other’s contributions, and code suggestions made by the
TU/e core developers were used as a starting point and
improved upon by the domain experts.

The Tu/e core developers also performed release and
Scrum plannings, daily Scrums, as well as Scrum retrospec-
tives. To guide their research and design decisions, they
met once per week with their scientific advisors (last three
authors) and at least once per week with the domain experts
(not counting additional workshops and training sessions).
These regular weekly meetings served as Sprint reviews
(i.e., a scientific and a practical review), each taking around
one hour. The scientific review involved reflecting on learn-
ings and was also an opportunity to resolve any problems
identified during the Sprint retrospective. Moreover, the
TU/e scientific advisors helped with diagnosing problems
to guide the release and Sprint planning. At the end of the
project, the core developers gave a final presentation on their
project, merged their contributions into the main branch of
Forest Foresight, and submitted additional documentation
they created on the project itself.

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 2 of 15

Preparing an R Package for Open-Source Contributions

:
(&)
action taking

(daily Scrum)

°
&)

evaluating
(Sprint review)

@)
learning

(Sprint review
and retrospective)

diagnosing
(release planning)

g

action planning
(Sprint planning)

domain experts TU/e core developers
g TU/e scientific advisors

Figure 2: Mapping of action-research steps (in bold) to Scrum
activities (in parentheses) within the individual Sprints of our
project (cf. Figure 1), including the primary partners involved.

In Figure 1, we display the relations between high-level
interventions (i.e., summarizing related smaller interven-
tions) and Scrum Sprints. During the first two Sprints, we
performed a detailed domain analysis of Forest Foresight,
which essentially represents a larger diagnosing step within
action research and resulted in a product backlog. All sub-
sequent Sprints followed roughly the same procedure: The
core developers started with a focused diagnosing step. They
planned possible smaller interventions (action planning) and
discussed these plans with the academic advisors during the
weekly scientific Sprint review regarding feasibility, scien-
tific resources, and timeline. Afterwards, the core developers
updated their next Sprint backlog and then executed that
Sprint (action taking). The evaluating step was challenging
because we could not elicit concrete metrics on the benefits
of, for example, code readability or process improvements.
Instead, we relied on introducing and adjusting best practices
from software engineering, gathering the domain experts’
feedback on whether these were helpful to them. We derived
learnings from the project during the scientific Sprint re-
views through discussions between the core developers and
academic advisors. During these discussions, we focused on
reflecting on and analyzing R-specific adjustments, design
decisions, as well as the training activities that we imple-
mented to derive valuable lessons learned.

3. Site Description and Domain Analysis

In the following, we describe the Forest Foresight pack-
age, its initial status, the partners involved, and the goals
of our project. Essentially, we summarize the results of our
initial domain analysis (cf. Figure 1) to describe the site
at which our project took place. Our domain analysis itself
started with coordination meetings among the authors in
which we agreed on the general directions of the project
and everyone’s roles. Within the first two Sprints, we refined

these directions into concrete goals and possible interven-
tions, reaching a principle agreement at the beginning of the
third Sprint. To inform our discussions, the first three authors
interviewed the domain experts, analyzed the Forest Fore-
sight repository, and read up on relevant software engineer-
ing practices (explained in Section 4 for each intervention).

3.1. Forest Foresight

Originally started as “Early Warning System,” Forest
Foresight is an open-source R package hosted on GitHub.?
The package’s first release on GitHub was version 2.0.0
(September 2, 2024) under the GNU GPL-3.0 license, only a
few weeks before our project started. On April 25, 2025, its
most recent Version (4.3.1) has been released. Initially, For-
est Foresight was developed by WWF in collaboration with
the Boston Consulting Group (BCG), Deloitte, Amazon Web
Services (AWS), and several academic institutions (WWE,
2022). However, please note that all code contributions to
Forest Foresight until our project started came from the
domain experts only.

Forest Foresight is a predictive early warning system
designed to prevent illegal deforestation by forecasting po-
tential deforestation sites. We display a screenshot of the
Forest Foresight dashboard when it is running for Bolivia
in Figure 3. The package is used in Suriname, Gabon,
Sarawak (province of Malaysia), and Kalimantan (province
of Indonesia), already averting illegal deforestation in Gabon
and Kalimantan. Due to the success of the package, WWF
plans to expand its use around these areas to cover the
Amazon River, Guiana Shield, Congo basin, Borneo, and
Sumatra. In addition, future rollouts of Forest Foresight
are planned, for instance, in the areas of Gran Chaco (Bo-
livia, Paraguay, Argentina, Brazil), Cerrado (Brazil), eastern
Africa, the Mekong River (China, Myanmar, Laos, Thailand,
Cambodia, Vietnam), and the island of New Guinea (Papua
New Guinea, Indonesia).

Forest Foresight uses near-real-time satellite data of
these areas, including optical and radar imagery, as well as
contextual information, such as, forest heights, proximity to
oil palm mills, roads, elevations, slopes, and agricultural po-
tential. It can incorporate user-provided data or preprocessed
datasets that are available online, currently with a focus on
the pan-tropical belt. Such data is fed into an XGBoost (Chen
and Guestrin, 2016) machine-learning model that is trained
on historical data with a six-month gap to identify regions
at risk of deforestation in the coming six months. The
model’s predictions are grouped by geographical proximity
and presented as prioritized alerts in a dashboard.

Given that Forest Foresight sometimes needs to oper-
ate on cost-effective hardware with limited RAM, R was
selected as the programming language of choice due to its
lazy loading and memory swapping. Other relevant design
goals included that the code, specifically the package’s main
function ff_run, offers sufficient flexibility to handle a broad
range of use cases. This shall enable users to tailor the
machine-learning model to their needs without diverging
from the Forest Foresight codebase.

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 3 of 15

Preparing an R Package for Open-Source Contributions

i s = u

This map shows the monthly updated Forest
Foresight predictions for Bolivia along with
context that can aid in prevention of
deforestation.

LEYENDA

Very High Risk

Very High Risk

High Risk

High Risk

Medium Risk

Medium Risk
ForestForesight predictions

image

l 0,096926307678223 - 0,5

Figure 3: A screenshot of the Forest Foresight dashboard for Bolivia.

Forest Foresight supports different spatial scales, lever-
aging 10x10-degree tiles for country-level or aggregated-tile
analyses. The package achieves a precision of up to 80 % and
allows local actors to prevent illegal deforestation (WWF,
2022)—which, otherwise, is typically identified only after
damage has been done.! So, the key idea of Forest Foresight
is to intervene before illegal deforestation takes place, taking
preventive measures against environmental destruction.

3.2. Roles of the Partners

WWF Domain Experts. WWF was founded in 1961 as a
Swiss-based international non-government organization to
protect the environment, focusing on preserving wilderness,
reducing human impact, avoiding natural loss, and fighting
climate change. Today, WWF has more than five million
supporters worldwide and has invested over $ 1 billion into
over 12,000 projects. As one of such projects, Forest Fore-
sight is managed by two core developers with whom we
collaborated to decide on and execute our interventions.
Consequently, the fourth and fifth (product owner of Forest
Foresight) authors of this paper served as contact persons for
the core developers. So, the domain experts provided input
on their needs and finally approved what interventions to
explore, implement, as well as keep.

TU/e Core Developers. From TU/e side, there were three
core developers (first three authors). They executed this
project as part of their EngD programs as an in-house
project. The EngD program is a two-year post-master pro-
gram involving four technical universities in the Netherlands
in which graduate students participate in courses and practi-
cal in-house projects.* In the end, EngD trainees conduct a

4ht‘cps://wwwAtu.rwl/sai/

ten-month final design project typically in collaboration with
an industrial partner. All three core developers were part
of the Scrum team and involved in all tasks of the project.
So, they were responsible for communicating with the other
partners, proposing and implementing interventions, as well
as reporting on their results. The first author acted as project
manager, the second as designer, and the third as Product
Owner as well as Scrum Master of the team.

TU/e Scientific Advisors. To guide the core developers in
their project, there was a group of three advisors from TU/e
(last three authors). The advisors were responsible for setting
up the project, meeting with the core developers to review
and plan their progress (scientific Sprint reviews), and sug-
gesting relevant research materials. As such, they helped the
core developers explore relevant software engineering prac-
tices and publications to scope their interventions. Further-
more, the advisors supported the fine-tuning of interventions
and judging their feasibility within the given time period.
During the regular meetings, the advisors also reflected with
the core developers on the learnings we report in this article.

3.3. Forest Foresight at the Start of the Project
When our project started, Forest Foresight was oper-
ational and employed in four areas around the world (cf.
Section 3.1), but still within its pilot phase. The domain
experts had no formal software engineering education, and
thus were not familiar with best practices on development
processes, design principles, or other relevant practices and
research. They felt that the codebase was not accessible to
newcomers, which harmed external contributions. Through
our domain analysis, inspection of the codebase, and discus-
sions with the domain experts, we identified several code and

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 4 of 15

https://www.4tu.nl/sai/

Preparing an R Package for Open-Source Contributions

process issues, which served as input for scoping the project
according to the domain experts’ needs.

Code Issues (CIs). When we analyzed the code of Forest
Foresight, we identified several areas for improvement:

CI, Using the lintr library from CRAN,’ we received
1,795 warnings for the entire codebase. The majority
of these warnings involved styling issues of the code,
which was not consistent with any commonly used
styleguide. Other warnings were related to, for instance,
visibility modifiers, line lengths, or symbols that should
be actual Boolean values.

CI, We found that the median length of a function was 49
lines of code, and some functions had several hundreds.

CI; We noticed that no unit tests were implemented.

CI, When inspecting ff_prep as the package’s interface, we
personally considered variable names and 15 function
names as ‘“vague;”’ with the domain experts agreeing
with this perception. Essentially, their purpose was hard
for us to understand without reading the surrounding
code, obtaining additional domain knowledge, or ask-
ing the domain experts.

CI;5 Relating to Cl,, we found that the documentation of the
code and its development process was outdated.

CIg We also found that configuration parameters were hard-
coded variables in the source code. Consequently, if a
user wanted to adjust Forest Foresight to their needs,
they needed to modify the actual source code.

CI; We identified that dependency management within and
beyond the package was not standardized, and thus
could easily cause breaking changes and reproducibility
issues for users relying on different environments.

Such code issues are well-established indicators of quality
problems in the design and implementation of software,
typically complicating program comprehension and mainte-
nance (Martin, 2008; Fowler, 1999; Zeller, 2009; Kriiger and
Hebig, 2023; Li et al., 2015). We felt that these were clear
directions for improving the code so that it would be easier
and more motivating for external developers to contribute to
Forest Foresight.

Process Issues (PIs). By inspecting the GitHub repository
and discussing with the domain experts, we aimed to un-
derstand their development process, which revealed some
complementary areas for improvement:

PI, We learned that external parties that wanted to use or
adjust Forest Foresight sent feature requests and bug
reports via e-mail. Consequently, discussions revolved
through different mail clients in an unorganized fashion,
and the submissions had to be developed and integrated
by the core developers.

5https ://cran.r-project.org/package=lintr
DOI: 10.32614/CRAN.package.lintr

PI, Related to PI;, we found that there was no explicitly
defined development process that would cover, for in-
stance, when to branch, fork, or merge.

PI; Due to CI5 and PI,, we were not surprised that there
were no contribution guidelines, like a contributing file
or templates for issues and pull requests.

PI, We noticed that Forest Foresight employed semantic
versioning, but did not strictly follow it to label releases
in a meaningful way. For instance, GitHub lists only two
releases (2.0.0, 3.0.0) for the time prior to our project.

PIs Since unit tests were missing (CI;) and no process
was defined (PI,), it was not surprising that automated
continuous integration was missing.

Such process issues are the result of not adhering to typical
software engineering practices. Due to the persistence of
the issues, the domain experts and we noticed that their
workload increased while external developers had trouble
contributing directly to Forest Foresight—essentially accu-
mulating process debt (Martini et al., 2020).

3.4. Goals of the Project

Domain Experts’ Needs. When we first discussed the
project with the domain experts, we identified three primary
goals (G) they wanted to achieve for Forest Foresight:

G, as a short-term goal, the package’s codebase should be
improved to make it easier to understand and maintain;

G, as a medium-term goal, the entire project should be
opened up towards attracting an open-source community
around Forest Foresight; and

G; as a long-term goal, a vision on how to maintain and
continue the project should be developed.

We discussed these goals among all partners and mapped
them to the areas of improvement we identified through our
domain analysis (cf. Section 3.3). Throughout the first two
Sprints, we refined this mapping and planned possible high-
level interventions. We discussed these interventions with
the domain experts and specified high-level requirements to
fix our agreement for the project.

In Table 1, we present an overview of the high-level
requirements we agreed on. As we can see, most of the
requirements connect to G,, aiming to introduce a sustain-
able change that opens Forest Foresight for open-source
contributors. The code improvements related to G; were
substantial, but we considered them also as a prerequisite
to achieve G,. Thus, we agreed that we would start with
improvements to the codebase but would also tackle the
medium-term goal of the domain experts. For G5, we agreed
that we would propose some future steps to explore, but we
considered them to exceed the scope and timeline of the
project. Specifically, we did not plan concrete interventions
for G5, but agreed on exploring machine-learning algorithms

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 5 of 15

https://cran.r-project.org/package=lintr

Preparing an R Package for Open-Source Contributions

Table 1

Overview of important high-level requirements agreed on by all partners. Approved means that our interventions had been
integrated at the end of our project, while draft refers to proposals on which the domain experts still had to decide on.

requirement issues goal final status
improve the codebase to make it more maintainable cl, Cl,, Cl,, Clg, Clg G approved
implement a testing strategy Cl;, Pl G,, G, approved
improve and update the documentation for developers and users Clg G,, G, approved
simplify dependency management to avoid breaking changes and facilitate reproducibility ~ Cl, G,, G, approved
alert users not familiar with GitHub about new releases Cly, Pl G, draft
introduce and document open-source collaboration practices Pl,, Pl,, Pl5, Pl, G, approved
introduce and document issue and bug reporting Pl,, Pl5 G, approved
introduce and document a development strategy Pl, G, approved
introduce and document a versioning principle Pl, G, approved
implement a continuous-integration pipeline to prevent breaking changes Plg G, approved
investigate alternative machine-learning solutions — G, draft
propose future steps for improving the project — G, approved

and management as well as a proposal for future improve-
ments of Forest Foresight; especially on its visibility for
open-source developers.

Envisioned Interventions. As described, laying the foun-
dation for a healthy open-source community around Forest
Foresight manifested as the primary goal of our project
(G,). Through this, the domain experts hoped to support
the package, engage more users, and increase the package’s
visibility. To achieve this goal, we aimed to address the
issues we identified to reduce the barriers of onboarding and
contributing to Forest Foresight. In detail, we planned five
high-level interventions (cf. Figure 1), which we detail in
Section 4: 1. code quality, 2. tooling, 3. testing, 4. process,
and 5. documentation. Please note that we did not always
follow the potentially “best” software engineering practices.
This was a deliberate choice to not overload domain experts
who also need to contribute to and who use Forest Fore-
sight. Consequently, we made some adjustments to simplify
a practice or make it more fitting to the domain experts’
experiences and development style.

Training. An important part of the project was to train the
domain experts on software engineering practices. For this
reason, the core developers did not simply implement the
changes and explain them, but followed an extensive training
process. Specifically, for each intervention, they first imple-
mented parts themselves to demonstrate by example. For
instance, they refactored parts of the codebase, introduced
a set of unit tests, set up a continuous-integration pipeline,
proposed issue and pull request templates, and created pull
requests. Then, they met with the domain experts to explain
an applied principle, introduce new tooling, and show how
it works, typically combined with workshops or reviewing
sessions. In such workshop session, the domain experts
would review the core developers’ work, apply the practices
themselves, and the core developers would then review the
domain experts’ work. Afterwards, they discussed the results
and any uncertainties. This way, we tried to transfer knowl-
edge and expertise based on applying the practices on the ac-
tual project. In the end, we had at least one of such workshop
sessions of around two hours for each intervention. After

one to two weeks after such a session, there was another
one to two hour session to discuss any problems the domain
experts experienced and to identify how to resolve these. The
final say on accepting an intervention and integrating the
proposed changes into Forest Foresight remained with the
domain experts. To track their progress and create reusable
documentation, the core developers documented their work
and the final decisions agreed on with the domain experts.

4. Interventions in Detail

In this section, we report on our five core interventions
in detail (from second to second-to-last in Figure 1). For
this purpose, we follow the steps of action research (Staron,
2020) to structure our experiences.

4.1. Code Quality

Diagnosing. To attract an open-source community, we
aimed to make the code of Forest Foresight as comprehen-
sive and structured as possible (G;). This means that the
codebase should be easy to read, organized, documented,
and follow established naming conventions. During our
domain analysis, we noticed that the code struggled along
these dimensions, seeing, for example, the 1,795 linter warn-
ings (CI,), long methods (CI,), and vague function/variable
names (CI;). When we analyzed the code in depth and
iterated through multiple improvements, we noticed that
such issues hampered our comprehension of the code.

Action Planning. To derive concrete improvements on code
quality, we built on our experiences, inspections of other
R packages, and research on, for example, software-design
principles (Robillard, 2019), refactoring (Fowler, 1999),
clean code (Martin, 2008), and identifier naming (Binkley
et al., 2013; Beniamini et al., 2017). Based on this, we
iteratively introduced the following interventions:

Cleaning Up Code: We started with cleaning up the code,
meaning that we employed refactorings to resolve
linter warnings (CI,), to split up long methods (CI,),
and to clarify vague identifier names (CI,). For this

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 6 of 15

Preparing an R Package for Open-Source Contributions

purpose, we also intended to introduce an established
code-style standard that should be adhered to.

Adding Code Documentation: In parallel to our other in-
terventions, we planned to add documentation (i.e.,
comments) within the code to provide a natural-
language explanation of complex code excerpts (Cls).

Introducing Single-Responsibility Principle: After split-
ting long methods, we proposed to further reduce the
code complexity by adhering to the single-responsibil-
ity principle by leveraging functional decomposition
(CI,). For this purpose, we planned to restructure the
functions into cohesive units of functionality and to
introduce a folder structure within the codebase.

Extracting Configuration Options: During our previous
Sprints on this intervention, we noticed and docu-
mented hard-coded configuration options in Forest
Foresight. During the later Sprints, we decided to
extract these into a dedicated configuration file to
allow users to configure the library without having to
modify the code itself (Cly).

Through these smaller interventions, we aimed to improve
the quality and understandability of the codebase.

Action Taking. At first, the core developers implemented
the interventions in a separate fork, refactoring parts of the
codebase. Then, they reviewed their changes with the do-
main experts during training workshops to identify whether
the refactored code was more comprehensive to them, too.
Upon agreeing on the extent of refactoring, the core develop-
ers and domain experts continued to independently improve
the code. Afterwards, they reviewed each others’ changes to
reflect on which improvements were perceived beneficial by
all of them. In the end, the entire code was refactored, and
finally approved by the domain experts.

To judge whether a piece of code needed to be refactored,
the core developers defined a set of questions, such as:

e Is the code easy to understand?

e Can complexity be reduced by refactoring the code?
o Is the code well organized?

e Are identifier names intuitive and obvious?

o Is the code well documented?

e Does the code meet the code-style standard?

Each developer’s understanding and the introduced code-
style standard served as basis to answer these questions.
As standard, the core developers proposed to employ the
Tidyverse styleguide.® Based on our research, this standard
is widely used in the R community, meaning that it is likely
for relevant contributors to be familiar with the styling of
the codebase. Also, this standard has the advantage of being

6https://styleAtidyverseorg/

compatible with the lintr library to verify it, while the
CRAN library styler’ supports some automatic formatting.

Evaluation. The domain experts approved and merged the
suggested code improvements into the main branch of Forest
Foresight. Their feedback was very positive and the improve-
ments were appreciated. In terms of concrete metrics, we
reduced the number of linter warnings from 1,795 down to
102, the median lines of code per function from 49 to 21,
and fixed 14 of the 15 vague function names we identified
before. In general, the positive feedback and the considerable
changes in the metrics indicate that our interventions were
valuable contributions to improving Forest Foresight.

Learning. Introducing basic software engineering princi-
ples on code style and formatting already had a positive
impact. Consequently, communicating the benefits of these
practices became simple in our case. Essentially, the core
developers initially had the role of newcomers onboarding
to the project: They had software engineering knowledge,
but no expertise in the domain or with the project. Their
subsequent confusions and clarification questions were clear
indicators for code improvements to facilitate the onboard-
ing of other external developers. Moreover, the domain
experts rapidly caught on to these practices, since they
experienced their benefits first-hand when working on the
code themselves. So, the issue was not about learning these
practices, but simply the missing background knowledge,
and thus a lack of awareness.

Regarding R, we experienced that breaking down com-
plex functions into smaller units was restricted by limitations
of the language and R-package specifications. When we
conducted our project, R packages did not allow developers
to use subdirectories within the /R folder, restricting code
organization to different files in a single directory (Wickham
and Bryan, 2023). This limitation prevented us from creating
a hierarchical folder structure to fully support the single-
responsibility principle, which could have further improved
the code. Other solutions exist, for example, the package
box on CRAN,? but we considered these to be out of scope
of this project. Particularly, we were reluctant to introduce
completely new and complex concepts to enforce another
practice. Instead, we proposed to break down complex
functions into smaller units either in the same file or in
separate files in the same directory.

4.2. Tooling

Diagnosing. Forest Foresight initially lacked tools for effec-
tive collaborative development. Dependency management
was not straightforward (CI;), there were no tools for style
checking (CI,), and a continuous-integration pipeline was
missing (PIs). Introducing the respective tooling reduces
manual development effort and provides immediate feed-
back to external developers on their contributions (G, G,).

7https://cran.r—project.org/package:styler
DOI: 10.32614/CRAN.package.styler

8https://cranAr—projectAorg/package:box
DOI: 10.32614/CRAN.package.box

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 7 of 15

https://style.tidyverse.org/
https://cran.r-project.org/package=styler
https://cran.r-project.org/package=box

Preparing an R Package for Open-Source Contributions

Please note that we introduced the tooling in parallel to other
interventions, since these are interdependent.

Action Planning. To scope interventions, we inspected
GitHub’s continuous-integration guidelines,” and how other
R projects check their code and manage dependencies. This
led to three plans:

Systematizing Dependency Management: To ensure a con-
sistent, reproducible environment for all contributors
and users, we proposed standardizing the dependency
management using the package renv!? (CI.).

Implementing Continuous-Integration: We proposed to
implement a continuous-integration pipeline using
GitHub Actions to automate various checks, such as
build success, unit testing, style compliance, and R
style validations (PIs).

Introducing Style Checker: Aswe describe in Section4.1,
we reformatted the code to adhere to the Tidyverse
styleguide. Logically, we also integrated the respec-
tive packages lintr and styler into code reviews and
the continuous-integration pipeline (CI,). To not reit-
erate the same content, we do not discuss the specifics
of the style checker separately below.

Through these interventions, we aimed to reduce the de-
velopers’ effort, maintain the quality of the codebase, and
implement automated feedback for external contributors.

Action Taking. The core developers introduced the R pack-
age renv, which allows users to create reproducible, isolated,
and portable environments by setting up a private library
for each project. For this purpose, they followed the setup
instructions to integrate renv into Forest Foresight and to
snapshot the dependency versions used. Now, renv is used
automatically when the project is opened and maintains
a lock file with the package versions to ensure consistent
dependencies. Furthermore, the core developers relocated
development-only packages to the description file’s Suggests
field to mark them as non-essential.

To automate repetitive tasks, the core developers imple-
mented continuous integration pipelines. Since Forest Fore-
sight is hosted on GitHub, they used the well-established
GitHub Actions, which provides all necessary features and is
free for open-source projects. Specifically, they implemented
the following pipelines:

Build and Release (build_release.yml) builds and releases
the Forest Foresight package if a pull request is
merged into the main branch.

Test and Check (r_test_and_check.yml) executes all unit
tests and the R CMD check!! on any code changes that
target the main or develop branches.

9https://github4com/resources/articles/devops/ci—cd
10https://cranAr—projectAorg/package:renv

DOI: 10.32614/CRAN.package.renv
11https://r-pkgs4org/R—CMD—checl«html

Styler and Lintr (styler_lintr.yml) formats the code us-
ing styler and lints the code with lintr on any code
changes that target the develop branch.

If any of these pipelines fails on a pull request, the creator
of that pull request will be notified, and the merge will be
blocked until all failing checks have been addressed.

Evaluation. The core developers introduced the new tooling
to the domain experts during training sessions, explaining
how they work and when they are triggered. Although we
cannot compute concrete metrics on the impact of the tools,
they have been used since. Overall, the domain experts’
perception about the tools was positive again, and they have
helped maintain the quality of the code since.

Learning. The tools we introduced are well-established
means to maintain code quality and automate checks on code
contributions. It is not surprising that they benefited Forest
Foresight, too. Similarly to the development practices we
introduced, one reason that dependency management and
continuous integration had not been used before was the lack
of awareness for such tools. However, setting up these tools
was also more complex than introducing development prac-
tices, which required us to read technical documentation in
detail. This step seems like a substantial, logical barrier that
requires more in-depth software engineering and technical
background than we should expect from domain experts.

4.3. Testing

Diagnosing. To find bugs, ensure robustness, check code
quality (Section 4.1), and enable continuous integration
(Section 4.2), testing is essential. However, at the beginning
of the project, Forest Foresight lacked any unit tests (CI3) or
further test automation (PIs). Consequently, quality assuring
the package was challenging and primarily a manual effort,
also limiting the possibility to test contributions by external
developers immediately.

Action Planning. Our primary action for this intervention
was straightforward to define: introducing automated unit
testing to quality assure code and changes (CI5, Pls). Unit
testing is a well-established strategy to test the correctness
of individual functions in isolation under predefined con-
ditions. Through automation, unit tests can be executed on
code changes to prevent them from introducing unintended
behavior (Martensson et al., 2019). We built on our knowl-
edge and established practices (Runeson, 2006; Daka and
Fraser, 2014) on unit testing to set up the test environment
and test cases for Forest Foresight.

By inspecting R resources and other packages, the core
developers identified testthat (Wickham, 2011)'? as the
most widely used unit-testing framework for R. It offers a
testing API and various tools to execute tests and evaluate
their results. We proposed to introduce testthat for Forest
Foresight and suggested to focus on two ways of defining
unit tests to keep the effort manageable:

12https://cranAr—projectAorg/package:testthat
DOI: 10.32614/CRAN.package.testthat

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 8 of 15

https://github.com/resources/articles/devops/ci-cd
https://cran.r-project.org/package=renv
https://r-pkgs.org/R-CMD-check.html
https://cran.r-project.org/package=testthat

Preparing an R Package for Open-Source Contributions

Testing Expected Behavior: These tests evaluate whether
a function behaves as expected. They do not cover all
possible execution paths or edge cases (i.e., robust-
ness) unless the developers consider these important.

Defining Tests on Regression: When a bug or issue with
the codebase is reported, a test case is created that
reproduces the problem. Once the problem has been
resolved and the test passes, the test ensures that
the issue remains resolved. We planned to iteratively
use these tests to demonstrate how to move towards
regression testing.

Please note that we did not focus on robustness tests during
our project to reduce complexity and effort. The current
testing strategy ensures that Forest Foresight performs as
expected for the main use cases and prevents regressions
over time. In parallel, the testing does not overwhelm domain
experts with new technologies and complexity.

Action Taking. To get started with testthat, the core de-
velopers set up the testthat infrastructure and a simple unit
test. After familiarizing themselves with the framework, they
developed more unit tests and created mock data. In parallel
to introducing the continuous-integration pipelines (cf. Sec-
tion 4.2), they conducted training sessions to explain how the
tooling and unit testing worked to the domain experts. The
pipelines also introduced regression testing. Throughout the
project, the core developers and domain experts added unit
tests, implementing 103 at the end of the project. Of those
unit tests, 65 were implemented by the domain experts.

Evaluations. After our project, Forest Foresight had 103
unit tests, instead of zero. The tests are used to check pull
requests and have proven useful, which is why the domain
experts continue to use and expand the test suite. In fact, as
we described in Section 4.2, the tests are executed for any
changes introduced to the main or develop branches. Even
though the test suite is not complete (e.g., missing robustness
tests), and thus is also not perfect for regression testing, the
domain experts were convinced by the testing strategy. This
is evidenced by the 65 test cases they implemented them-
selves, and their commitment to sustain the test coverage.

Learning. Introducing a testing strategy can be an over-
whelming task, due to the many options and tools available.
In our experience, the testthat framework works well for
R and can be easily trained to domain experts. To reduce
workload and complexity, we deliberately decided to first
focus on the most-established testing strategy of unit testing
and a subset of all relevant testing purposes. We did also not
dive into coverage criteria or other more in-depth testing top-
ics. Our reduced testing strategy felt like a feasible balance
between avoiding overly complex testing while covering the
most important error sources. By laying these foundations,
we enabled the domain experts to expand the existing test
suite and to expand the testing strategy according to their
future needs.

4.4. Process

Diagnosing. To motivate external developers to contribute
and to manage community contributions, defining processes
like reporting a bug, proposing a feature, or submitting a
contribution should be defined. However, while hosted on
GitHub, Forest Foresight did not make use of GitHub’s well-
established support for community collaboration and pro-
cesses (PL,, PI5). Instead, the domain experts communicated
primarily via e-mail (PI;) and through a Discord. Lastly,
while semantic versioning was known, it was not enforced
as part of the release process (PI;). In summary, at the
beginning of the project, the core developers felt that it was
largely unclear for externals or onboarding developers how
Forest Foresight was developed and what communication
channels to use—which was also related to the outdated
documentation (cf. Section 4.5).

Action Planning. As an initial step to investigate process im-
provements, we studied research on barriers for newcomers
who want to join open-source projects (Steinmacher et al.,
2015,2019) and on contribution guidelines (Fronchetti et al.,
2023; Kriiger et al., 2020). At this point, it became apparent
that defining a feasible open-source development process
is a complex topic that exceeded the scope of our project.
Consequently, we decided to narrow down our scope to
adapting a smaller set of well-established practices.

For this purpose, the core developers inspected the de-
velopment processes used by two successful open-source
projects. First, the Linux kernel'? is one of the most promi-
nent and largest software systems ever developed, and is still
organized via mailing lists (Schneider et al., 2016). Second,
the Marlin 3D printer firmware!* follows a more typical
community-driven process, while still being coordinated by
core developers (Kriiger et al., 2019). We selected these
two systems, because they have substantial communities, a
form of central authority (i.e., resembling the domain experts
for Forest Foresight), and contrast the two development
strategies (i.e., e-mail versus GitHub). As a consequence,
we considered these two systems as feasible subjects to
showcase how the domain experts could keep the mailing
system (i.e., Linux process) or move more towards GitHub
(i.e., Marlin process).

Based on our analysis, we proposed to the domain ex-
perts to use GitHub instead of e-mail to take advantage of:

e A simple and integrated issue-tracking system that
is less intimidating for newcomers compared to a
mailing list, and which is well-known to many open-
source developers.

e Collocating issues, pull requests, and developer dis-
cussions with the code repository, establishing a cen-
tral communication platform managed by the experts.

e Facilitated organization and discovery of issues and
pull requests via labels and filters.

]3https://www.kernel.org/
14https://marlim"w.org/

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 9 of 15

https://www.kernel.org/
https://marlinfw.org/

Preparing an R Package for Open-Source Contributions

We proposed these changes because Forest Foresight is
currently a smaller open-source project that aims to attract
a community. Thus, simplicity and openness are key, while
developing Forest Foresight does currently also not require
more elaborate structures. For these reasons, we considered
the move towards a single platform for all relevant artifacts
and communications to reduce organizational overhead and
to lower newcomer barriers.

To move towards GitHub, we planned four interventions:

Introducing Templates: GitHub allows developers to de-
fine issue and pull-request templates to ask for specific
information. We proposed to introduce such templates
to make it easier for external developers to interact
and to understand what pieces information should be
provided, also reducing the need for back and forth
discussions (PI3).

Managing Issues and Pull Requests: We aimed to define
and document a workflow for maintainers for mod-
erating issues and pull requests (PI;, PI;). This way,
we wanted to ensure that important properties are
checked, that contributors receive feedback, and that
maintainers act consistently.

Enforcing Code Reviews: To maintain code standards, we
suggested mandatory code reviews for any new change
to the develop and main branches (P1,).

Defining Workflows: To remedy the absence of a branch-
ing strategy, we proposed implementing a simplified
version of Gitflow!> as a starting point (PI,).

Automating Semantic Versioning: To improve the adher-
ence to semantic versioning (PI,), we discussed its
details with the core developers and implemented
automated releases, as we described in Section 4.2.

Our goal with these interventions was to make Forest Fore-
sight easier to engage with by defining consistent processes
for submitting, reviewing, and integrating contributions.

Action Taking. The core developers introduced templates
for issues and pull requests following GitHub’s documen-
tation.'® Based on their research on other R packages and
Marlin, they developed three templates:

1. Bug reports (issues) to allow others to report mis-
behavior of Forest Foresight using fields to describe
the bug, steps to reproduce it, the expected behavior,
screenshots if applicable, and additional context for
any other details.

2. Feature requests (issues) to allow others to propose
new features for Forest Foresight using fields to de-
scribe the specific problem to solve, the envisioned so-
lution, potential alternatives, and additional context.

15ht‘cps ://nvie.com/posts/a-successful-git-branching-model/
1()https ://docs.github.com/en/communities/
using-templates-to-encourage-useful-issues-and-pull-requests

3. Pull requests allow developers to submit their contri-
butions for integration into Forest Foresight, for which
they are asked to describe the pull request, require-
ments, relevant configurations, and related issues.

The core developers implemented and tested these templates
iteratively, conducting training sessions with the domain
experts to show them how these templates work and to
collect their feedback.

Regarding workflows, the core developers tackled two
aspects. First, they defined a workflow for maintainers on
how to moderate issues and pull requests. The proposed
workflow specifies when and how to close duplicated or out-
of-scope issues and how to ensure that pull requests meet
the project’s new quality standards via code reviews and
continuous integration. As for most open-source systems
that are developed on GitHub, external developers can work
on issues in a personal fork and propose their changes via a
pull requests, which must be approved and integrated by a
maintainer of Forest Foresight.

Second, for the internal workflow by maintainers, the
core developers introduced Gitflow as a comprehensive
means to coordinate branches. To ease the adoption, they
introduced basic concepts like feature branches and how
these interact with the main and develop branches. In parallel,
they allowed more flexibility to not introduce any unneces-
sary constraints that are hard to explain—and that are not
necessarily a best practice for every software project.!> For
instance, through training sessions with the domain experts,
the core developers decided to omit concepts like hotfix or
release branches. Instead, they aimed to align more with
trunk-based development, which has become more popular.

A substantial change in the domain experts’ workflows
was the introduction of systematic code reviews. To guide
maintainers, the core developers proposed to use the same
questions as for code quality (cf. Section 4.1) as refer-
ence. In addition to these questions, the maintainers should
also inspect whether the new or changed code is tested to
support future continuous integration (cf. Section 4.4). By
using these questions, we hoped to motivate maintainers
to critically reflect on a pull request and ask questions for
clarifications or changes before approving a pull request.

Evaluating. We introduced and adjusted our interventions
through training sessions, in which we received positive
feedback from the domain experts. They quickly familiar-
ized themselves with the process changes and applied them
for their own development of Forest Foresight. In fact, the
project had no issues or pull requests when we started the
project. By the end of the project, we identified 11 open and
23 closed issues, two open and 31 closed pull requests (24
successful merges), and 256 executions of the continuous-
integration pipelines. There was only a single direct push to
the develop branch. In all other cases, the domain experts
and core developers followed the introduced Gitflow. We
remark that the core developers introduced only a small set of
issues to enable the training. Already during the remainder
of the project, the domain experts maintained the issues

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 10 of 15

https://nvie.com/posts/a-successful-git-branching-model/
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests

Preparing an R Package for Open-Source Contributions

and pull requests. The domain experts have continued to
actively make use of the new processes. As of July 1, 2025,
Forest Foresight has seven open and 50 closed issues (23
more) as well as two open and 72 closed (63 merged) pull
requests (39 more). These numbers and the visible shift
in the development practices underpin that the introduced
interventions are perceived helpful by the domain experts
and can likely ease contributions by external developers.

Learning. Software-development processes can be complex
and challenging to grasp for domain experts without the
respective background. To mitigate these problems, we sim-
plified many process steps and practices, aiming to introduce
fundamentals during our project. We found such simpli-
fications very helpful for three reasons. First, it became
easier to introduce software engineering practices to the
domain experts. Second, it allowed us to focus on some
fundamentals and show their benefits for developing Forest
Foresight and potentially attracting open-source contribu-
tors. Third, starting with a few fundamentals made it simpler
to scope and customize these to the domain experts’ needs.
Seeing the improvements and guidance of the implemented
process changes quickly convinced the domain experts of the
interventions’ benefits.

4.5. Documentation

Diagnosing. At the beginning of the project, the core devel-
opers were challenged by a lack of up-to-date documentation
of Forest Foresight, for code and processes alike (Cls). Inad-
equate or unclear documentation can significantly hinder de-
velopers in attempting to onboard and contribute to an open
source project (Steinmacher et al., 2019), while a compre-
hensive contributing file can be highly beneficial (Fronchetti
et al., 2023). Unfortunately, documentation is often poorly
maintained, even though it can be helpful to, and is appre-
ciated, by developers (Kriiger and Hebig, 2023; Nielebock
et al., 2019). Consequently, throughout the initial Sprints,
it also became apparent that maintaining the documentation
of Forest Foresight would have helped tremendously with
onboarding the core developers and recovering knowledge.
Similarly, version releases did not clearly document the
nature of the introduced changes, incrementing only major
releases and containing no information, for instance, on
breaking changes.

Action Planning. We planned two types of improvements:

Commenting Source Code: The benefits of commenting
source code are often debated in software engineer-
ing (Nielebock et al., 2019; Martin, 2008). Still, we
proposed to comment complex pieces of code to help
communicate and clarify the intentions of code among
domain experts and open-source developers (Cls).

Introducing Contributing Guidelines: As an extensive
effort, we agreed to document the process changes
we introduced (cf. Section 4.4), propose a respective
contributing file to help onboarding developers, and
update the readme of Forest Foresight (Cls, PI,, PI3).

By creating the respective documentation, we intended to
facilitate contributions from (external) developers by pro-
viding comprehensive explanations of the project and its
development processes.

Action Taking. While improving the codebase (cf. Sec-
tion 4.1), the core developers added comments where they
considered them feasible and reviewed these with the do-
main experts. Furthermore, they created notes and presenta-
tions on the project to record their progress. While introduc-
ing the interventions, they also created respective documen-
tation, for instance, on coding-style standards, continuous
integration, workflows, issue and pull-request templates,
or the source code. They synthesized their notes into the
contributing file, templates, and internal reports. Lastly, they
reflected on their insights from researching Forest Foresight
and mapped these to the readme, proposing fixes to update
the information contained in it.

Evaluating. At the end of the project, the core developers
had added extensive documentation to Forest Foresight,
most importantly the contributing file as a central resource
for external developers. We consider this a substantial up-
grade to Forest Foresight, since we personally experienced
the challenge of familiarizing with the project when lacking
necessary domain knowledge. The domain experts agreed on
the substantial updates and improvements the core develop-
ers implemented.

Learning. While developers have mixed opinions about
code documentation, we found it tremendously beneficial to
record domain specifics. This includes comments in the code
to explain complex or domain-specific constructs explicitly
at the respective locations as well as process documentation.
As underpinned by previous research, we perceived particu-
larly the contributing file as helpful, also for internal use.

5. Lessons Learned

Interventions and Forest Foresight. Forest Foresight is an
important R package to prevent deforestation. We aimed to
improve the package and its implementation, helping the do-
main experts to hopefully attract an open-source community
in the future. Compared to the beginning, all parties of the
project agreed that our interventions improved the package.
For example, we reduced linter warnings (from 1,795 to
102), introduced continuous integration, implemented 103
unit tests, defined processes, added templates, and created
extensive documentation. Most of these things were missing
at the start of our project, but are fundamental to improve
any software system and its development. During the project,
it became clear that such established software engineering
practices are highly valuable, and were only missing due to
the domain experts not being aware of these.

Consequently, as we display in Table 1, almost all of
our interventions were in the end approved by the domain
experts to fulfill the defined requirements. Only two of the
requirements were still in the status “draft.” First, we did
not introduce an automatic means for alerting users that are

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 11 of 15

Preparing an R Package for Open-Source Contributions

not familiar with GitHub about new releases, but suggested
several options that the domain experts have to coordinate
with their users. Second, we investigated improvements for
the algorithms and for managing the machine-learning com-
ponents of Forest Foresight, but introducing and benchmark-
ing these exceeded the agreed scope of our project. Neither
of these two requirements being in a draft status limits the
success of the project, with all parties agreeing that these
must be addressed in future projects and decided upon by
the domain experts. Similarly, we identified and proposed
a series of future improvements on software engineering
practices, which we report in Section 6.

In essence, we can summarize our key insights into our
interventions regarding our case as follows:

~—— Interventions on Software Engineering Practices —————
« Established software engineering practices had a posi-
tive impact. « Improving the code structure helped both
the joining and the original (domain experts) develop-
ers. « While using established tools was very helpful,
some more advanced ones (e.g., continuous-integration
pipelines) were complex for the domain experts and even
the core developers to set up. Defining and documenting
templates, guidelines, and recommendations helped the
domain experts stick to software engineering practices. o

. J

R Programming Language. Forest Foresight started as an
R package because this allowed to run it on cost-effective
hardware. Moreover, the language involves features that sim-
plify programming, many packages, and was known to the
domain experts. Such properties made it a feasible choice.
Still, with the project growing and becoming more complex,
we experienced that using R became more challenging.
Most importantly, as we described in Section 4.1, the
R language and its package specifications imposed lim-
itations on code organization. Specifically, the specifica-
tions prohibited developers from organizing their R code
in subdirectories in the /R folder. The official documen-
tation on this limitation, the underlying design decisions,
and the recommended solutions were sparse. Regardless of
the intentions behind this decision, it can be problematic
for developers of a package that grows beyond a certain
size. A flat hierarchy requires a developer to either accept
suboptimal code organization, or to split the package into
multiple packages. However, splitting a package may not fit
the conceptual boundaries of the package. Also, resorting to
third-party solutions may run the risk of falling out of sync
with the core language specification. For our project, this
situation made it more complicated to enhance the codebase.
While R experts may have a good solution for this
flat hierarchy, domain experts without this background and
limited time will likely not be able to identify or implement
such a solution. Consequently, projects driven by domain
experts, such as Forest Foresight, should carefully consider
what programming language to use and what software en-
gineering practices work with that language. In the end, the
availability of relevant out-of-the-box features and ease of
use for domain experts are often the key factors for selecting

a programming language in such projects. Thus, researchers
should investigate how to identify and transfer best practices
for languages that have been considered less often in the past.

In essence, we can summarize our key insights into R
regarding our case as follows:

~ R for Software Projects N
« R was a reasonable choice at the start of developing
the package due to its accessibility to the domain ex-
perts. « R imposed constraints that made it challenging
to implement certain software engineering practices and
principles. « R offered various supporting packages with
varying degrees of visibility and accessibility. e

\ J

Training. Our project involved extensive training activi-
ties for domain experts without software engineering back-
ground. In our experience, it worked best to start with
basic software engineering practices, stripping them down
to their essence and introducing them by example. Then, the
domain experts can implement the demonstrated principles
themselves in their project, allowing for collaborative review
sessions to gather each others’ feedback. Through this feed-
back, it is possible to identify confusions, scope adjustments
and simplifications, or decide to deepen certain practices.
These collaborative review sessions also helped us reflect on
the trade-offs of the introduced practices within the projects’
specific context and the responsible developers’ work style.
Lastly, we felt that documentation was particularly important
for our project to establish a coherent reference for all
involved and future parties, independently of their expertise.

In essence, we can summarize our key insights into
training domain experts as follows:

~— Training Domain Exerts \
» Simplifying software engineering practices made it
easier to introduce these to the domain experts. e Starting
with interventions that yield immediate improvements
made it easy to demonstrate benefits. Interactive training
sessions with learning-by-doing were key. « Core causes
for the domain experts not using software engineering
practices before were a lack of awareness of these or mis-
understandings of their intent. « Documenting practices
and decisions led to a reliable reference. o

6. Prospects

During the project, the core developers proposed several
follow-up interventions to the domain experts. We grouped
these follow-ups into four areas: open-source readiness, en-
hancements to the machine-learning workflow, implementa-
tion of a logging library, and submission of the package to
CRAN. Next, we briefly discuss these prospects and their
potential benefits, roughly ordered by importance and ease
of implementations.

Getting Open-Source Ready. To foster an open-source
community, it is vital that a project is visible and easy to find.
There are several ways to improve visibility. For instance,
the project may be submitted to platforms that showcase

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 12 of 15

Preparing an R Package for Open-Source Contributions

different types of open-source projects. Additionally, Forest
Foresight may gain exposure via blogs, news articles, and
other media outlets. This paper also provides visibility for
the project, and the domain experts are investigating other
channels, too.

Besides increasing visibility, we stressed project mainte-
nance and community building as key to retain newcomers
to the project. As a means to facilitate onboarding, we have
suggested to adapt labels or links for “good first issues,”
“help wanted,” or “contributing” in the future. These labels
are used by other projects and websites to provide starting
points for newcomers and highlight different options to
contribute to a project (Kriiger et al., 2020; Tan et al., 2020).

Improving Machine-Learning Workflows. The core de-
velopers and domain experts agreed that the storing and
management of machine-learning model versions with their
features, parameters, metrics, and other artifacts could be
improved. Ideally, different models could be exchanged to
experiment, and rollbacks could be simplified. In addition,
we identified collaborative model development with inte-
grated data management as a possible direction. To address
these needs, we proposed a transition to MLflow.!” With our
project, we laid a starting point for this endeavor and drafted
possible strategies to move into this direction (cf. Table 1).
Still, ultimately, this direction exceeded the scope of our
project, requiring substantial training efforts to familiarize
the WWF and other domain experts with MLflow.

Implementing Logging. During their work, the core de-
velopers noticed that it would be beneficial to introduce a
logging library to obtain more informative bug reports. For
them, the current lack of such a library hampered effective
debugging. In addition to facilitating debugging, logging
could also simplify adding reporting logs and customizing
logging processes. We have recommended the R package
1gr'® as a feasible option. However, implementing logging
within a project is an extensive task and the domain experts
must first decide on their interests in this direction.

Introducing Forest Foresight to CRAN. Lastly, and most
ambitious, we recommended submitting Forest Foresight to
CRAN. CRAN is a popular package repository in the R
community and being listed in it adds community visibility.
Also, passing the CRAN review process represents a mark of
credibility for end users and developers, potentially drawing
in more contributors. In turn, the CRAN criteria are more
ambitious than what we could implement within a single
project, and than what the domain experts currently want to
introduce. So, we suggested to keep an eye on CRAN and
whether it becomes worth it to fulfill its criteria in the future.

At the end of our project, we reflected on the CRAN
submission checklist'® and the status of Forest Foresight.
We found that we fulfilled many of the checklist’s criteria,

]7https://mlflow4org/
18https://cran.r'fproject.org/packagezlgr
DOI: 10.32614/CRAN.package.lgr
]9https://cranAr—project4org/web/packages/submission,checklist.
html

but some would require more engineering work and enough
interest to maintain the status for future releases. In essence,
Forest Foresight passed the R CMD check —as-cran continuous-
integration pipeline without errors. However, we received
a few warnings that would require further improvements of
the package. Regarding the documentation, we added a .Rd
file in the man/ directory, a README . md- file, a CONTRIBUTING.md
file, and documented exported functions using roxygen2”’
as required. Identically, we provide a correctly formatted
DESCRIPTION file with title, description, and author fields
filled in (but missing ORCID entries). Lastly, additional
cross-platform testing would be required before submitting
Forest Foresight to CRAN. Specifically, we tested Forest
Foresight on Ubuntu and Windows, but not on macOS.

7. Threats to Validity

In this article, we reported the conduct, results, and
experiences of a practical project, essentially representing
an action-research-like experience report. Thus, our findings
are inherently not generalizable to other software systems or
developers. Instead, we focused on reporting our work and
learnings in-depth for this specific case of Forest Foresight.
While not generalizable, our work represents a substantial
and unique case in which we introduced software engi-
neering practices into an R package developed by domain
experts. We hope that our experiences contribute supportive
evidence to the broader body-of-knowledge and can help
practitioners adopt software engineering practices.

Due to the lack of quantifiable metrics, we did not follow
a full-fledged and systematic action-research methodology.
For this reason, we cannot guarantee that the changes in the
development of Forest Foresight can be attributed solely to
our interventions. The intermixed introduction of our inter-
ventions is inherent to their nature and also more realistic,
but challenges the internal validity regarding the impact
of interventions. Still, we contribute experiences of a real-
world case, and the feedback of the domain experts together
with the clearly visible changes improves our confidence that
our interventions had a positive impact.

8. Related Work

Researchers have extensively investigated open-source
projects and communities. Throughout this article, we have
referenced research related to our interventions, primar-
ily on lowering barriers for contributors and newcom-
ers (Fronchetti et al., 2023; Kriiger et al., 2020; Steinmacher
et al., 2019, 2015; Tan et al., 2020). More closely related,
several researchers have investigated how to make open
source projects more attractive and accessible to outside
contributors. For instance, Kochhar et al. (2021) report
the results of interviews on six Microsoft projects that
transitioned from closed to open-source. Their findings
highlight that even companies aim to build open-source

2Ohttps://cran.r—project.org/web/packages/ro><yger12/inde><.html
DOI:10.32614/CRAN.package.roxygen2

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 13 of 15

https://mlflow.org/
https://cran.r-project.org/package=lgr
https://cran.r-project.org/web/packages/submission_checklist.html
https://cran.r-project.org/web/packages/submission_checklist.html
https://cran.r-project.org/web/packages/roxygen2/index.html

Preparing an R Package for Open-Source Contributions

communities and that the required changes for creating
these communities impact development processes. In an
older work, Kilamo et al. (2012) propose recommendations
for releasing proprietary industrial software as open source
and positioning it optimally for open-source contributions,
which were used in four industrial case studies. Similarly,
Sirkkala et al. (2009) have derived recommendations for
the early steps of such transitions, which they evaluated
through first insights into three case studies. Jansen et al.
(2012) have developed a framework to judge how “open”
a software-developing organization is. Lastly, Pinto et al.
(2018) conducted a study on eight projects that moved from
closed to open-source to investigate common beliefs. They
found that it is challenging to attract and keep newcomers
for such software projects.

Within the area of research software engineering (Lam-
precht et al., 2022; Felderer et al., 2025; Cohen et al., 2021),
several studies offer recommendations and rules on the
sustainable development of open-source software by domain
experts with varying experiences as software engineers. For
instance, Ferenz et al. (2025) contribute recommendations
for improving software developed by researchers without
formal training in software engineering. With regards to
fostering a healthy community, Prli¢ and Procter (2012) note
that merely releasing the software under an open-source
license is not enough if the goal is to encourage outside
contributions. To mitigate this issue, the authors offer rec-
ommendations for developers who aim to encourage outside
contributions to their scientific software.

Our work complements such previous research with
insights into improving a different system, developed by
a non-government organization using R for environmental
protection. As such, we contribute a complementary case
that is related to opening software for open-source communi-
ties and that can also inform research software engineering.
Due to the different properties (e.g., industry versus non-
government organization, domain of environmental protec-
tion), we provide novel insights as well as supportive evi-
dence that interests and changes are similar across projects.

9. Conclusion

In this article, we shared our experiences of improving
Forest Foresight’s code quality, tooling, testing, processes,
and documentation to prepare future open-source contribu-
tions. Besides insights into our changes, we reported particu-
larly on teaching domain experts that do not have a software
engineering background. Due to the unique nature of the
project, we contribute an interesting case for how software
engineering practices can improve a non-government orga-
nization’s project. Still, this is only one step of a hopefully
long-living software project that will continuously evolve
and advance. So far, we focused on interventions that bring
immediate value while being simple and demonstrable im-
provements. We plan to further improve Forest Foresight and
its development in the future, aiming to establish a lively
open-source community.

CRediT authorship contribution statement

Amin Bakhshi: Conceptualization, Methodology, Soft-
ware, Validation, Investigation, Writing - Original Draft,
Writing - Review & Editing, Project administration. Hasrul
Maruf: Conceptualization, Methodology, Software, Vali-
dation, Investigation, Writing - Original Draft, Writing -
Review & Editing, Project administration. Maas van Apel-
doorn: Conceptualization, Methodology, Software, Vali-
dation, Investigation, Writing - Original Draft, Writing -
Review & Editing, Project administration. Zillah Calle:
Conceptualization, Software, Validation, Investigation, Re-
sources, Writing - Review & Editing. Jonas van Duijven-
bode: Conceptualization, Software, Validation, Investiga-
tion, Resources, Writing - Review & Editing, Project ad-
ministration. Ismay Wolff: Writing - Original Draft, Writing
- Review & Editing, Supervision. Yanja Dajsuren: Con-
ceptualization, Writing - Review & Editing, Supervision,
Project administration. Jacob Kriiger: Conceptualization,
Methodology, Writing - Original Draft, Writing - Review &
Editing, Supervision, Project administration.

References

Beniamini, G., Gingichashvili, S., Orbach, A.K., Feitelson, D.G., 2017.
Meaningful identifier names: The case of single-letter variables, in:
International Conference on Program Comprehension (ICPC), IEEE.
doi:10.1109/icpc.2017.18.

Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B.,
2013. The impact of identifier style on effort and comprehension.
Empirical Software Engineering 18. doi:10.1007/s10664-012-9201-4.

Bologna, M., Aquino, G., 2020. Deforestation and world population
sustainability: A quantitative analysis. Scientific Reports 10. doi:10.
1038/s541598-020-63657-6.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system,
in: International Conference on Knowledge Discovery and Data Mining
(KDD), ACM. doi:10.1145/2939672.2939785.

Cohen, J., Katz, D.S., Barker, M., Chue Hong, N., Haines, R., Jay, C., 2021.
The four pillars of research software engineering. IEEE Software 38.
doi:10.1109/MS. 2020.2973362.

Daka, E., Fraser, G., 2014. A survey on unit testing practices and prob-
lems, in: International Symposium on Software Reliability Engineering
(ISSRE), IEEE. do0i:10.1109/ISSRE.2014.11.

Einhorn, C., Buckley, C., 2021. Global leaders pledge to end deforestation
by 2030. The New York Times URL: https://www.nytimes.com/2021/11/
02/climate/cop26-deforestation.html.

FAO, 2020. Global Forest Resources Assessment 2020: Main Report.
Technical Report. Food and Agriculture Organization of the United
Nations. doi:10.4060/ca9825en.

Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.L.,
Rumpe, B., 2025. Investigating research software engineering: Toward
RSE research. Communications of the ACM 68. doi:10.1145/3685265.

Ferenz, S., Frost, E., Schrage, R., Wolgast, T., Beyers, 1., Karras, O., Werth,
0., Niefle, A., 2025. Ten recommendations for engineering research
software in energy research, in: International Conference on Future and
Sustainable Energy Systems (e-Energy). doi:10.1145/3679240.3734606.

Fowler, M., 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

Fronchetti, F., Shepherd, D.C., Wiese, 1., Treude, C., Aurélio Gerosa, M.,
Steinmacher, 1., 2023. Do CONTRIBUTING files provide informa-
tion about OSS newcomers’ onboarding barriers?, in: Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), ACM. pp. 16-28. doi:10.1145/
3611643.3616288.

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 14 of 15

http://dx.doi.org/10.1109/icpc.2017.18
http://dx.doi.org/10.1007/s10664-012-9201-4
http://dx.doi.org/10.1038/s41598-020-63657-6
http://dx.doi.org/10.1038/s41598-020-63657-6
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1109/MS.2020.2973362
http://dx.doi.org/10.1109/ISSRE.2014.11
https://www.nytimes.com/2021/11/02/climate/cop26-deforestation.html
https://www.nytimes.com/2021/11/02/climate/cop26-deforestation.html
http://dx.doi.org/10.4060/ca9825en
http://dx.doi.org/10.1145/3685265
http://dx.doi.org/10.1145/3679240.3734606
http://dx.doi.org/10.1145/3611643.3616288
http://dx.doi.org/10.1145/3611643.3616288

Preparing an R Package for Open-Source Contributions

Interpol, 2021. Forestry crime fact sheet 2021. https://www.interpol.
int/en/content/download/17367/file/Forestry%20Crime%20Fact%20sheet%
202021 pdf.

Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L., 2012. Shades of gray:
Opening up a software producing organization with the open software
enterprise model. Journal of Systems and Software 85. doi:10.1016/].
jss.2011.12.007.

Kilamo, T., Hammouda, 1., Mikkonen, T., Aaltonen, T., 2012. From
proprietary to open source—growing an open source ecosystem. Journal
of Systems and Software 85. do0i:10.1016/j.jss.2011.06.071.

Kochhar, P.S., Kalliamvakou, E., Nagappan, N., Zimmermann, T., Bird,
C., 2021. Moving from closed to open source: Observations from
six transitioned projects to github. IEEE Transactions on Software
Engineering 47. doi:10.1109/TSE.2019.2937025.

Kriiger, J., Hebig, R., 2023. To memorize or to document: A survey of
developers’ views on knowledge availability, in: International Confer-
ence on Product Focused Software Process Improvement (PROFES),
Springer. pp. 39-56. doi:10.1007/978-3-031-49266-2_3.

Kriiger, J., Mukelabai, M., Gu, W., Shen, H., Hebig, R., Berger, T., 2019.
Where is my feature and what is it about? A case study on recovering
feature facets. Journal of Systems and Software 152. doi:10.1016/3. jss.
2019.01.057.

Kriiger, J., Nielebock, S., Heumiiller, R., 2020. How can i contribute? A
qualitative analysis of community websites of 25 Unix-like distributions,
in: International Conference on Evaluation and Assessment in Software
Engineering (EASE), ACM. doi:10.1145/3383219.3383256.

Lamprecht, A.L., Martinez-Ortiz, C., Barker, M., Bartholomew, S.L., Bar-
ton, J., Hong, N.C., Cohen, J., Druskat, S., Forest, J., Grad, J.N., Katz,
D.S., Richardson, R., Rosca, R., Schulte, D., Struck, A., Weinzierl, M.,
2022. What do we (not) know about research software engineering?
Journal of Open Research Software 10. doi:10.5334/jors.384.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on
technical debt and its management. Journal of Systems and Software
101. doi:10.1016/3.js5.2014.12.027.

Martensson, T., Stahl, D., Bosch, J., 2019. Test activities in the continuous
integration and delivery pipeline. Journal of Software: Evolution and
Process 31. doi:10.1002/smr.2153.

Martin, R.C., 2008. Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall.

Martini, A., Besker, T., Bosch, J., 2020. Process debt: A first exploration, in:
Asia-Pacific Software Engineering Conference (APSEC). doi:10.1109/
APSEC51365.2020.00040.

Nielebock, S., Krolikowski, D., Kriiger, J., Leich, T., Ortmeier, F., 2019.
Commenting Source Code: Is It Worth It for Small Programming Tasks?
Empirical Software Engineering 24. doi:10.1007/s10664-018-9664-z.

Pinto, G., Steinmacher, 1., Dias, L.F., Gerosa, M., 2018. On the challenges
of open-sourcing proprietary software projects. Empirical Software
Engineering 23. doi:10.1007/s10664-018-9609-6.

Prli¢, A., Procter, J.B., 2012. Ten simple rules for the open development
of scientific software. PLoS Computational Biology 8. doi:10.1371/
journal.pcbi.1002802.

Ripple, W.J., Wolf, C., van Vuuren, D.P., Gregg, J.W., Lenzen, M., 2024. An
environmental and socially just climate mitigation pathway for a planet
in peril. Environmental Research Letters 19. doi:10.1088/1748-9326/
ade59e.

Robillard, M.P., 2019. Introduction to Software Design with Java. Springer.
doi:10.1007/978-3-030-97899-0.

Runeson, P., 2006. A survey of unit testing practices. IEEE Software 23.
doi:10.1109/MS.2006.91.

Schneider, D., Spurlock, S., Squire, M., 2016. Differentiating communica-
tion styles of leaders on the linux kernel mailing list, in: International
Symposium on Open Collaboration (OpenSym), ACM. doi:10.1145/
2957792.2957801.

Sirkkala, P., Aaltonen, T., Hammouda, I., 2009. Opening industrial soft-
ware: Planting an onion, in: International Conference on Open Source
Systems (OSS), Springer. doi:10.1007/978-3-642-02032-2_7.

Staron, M., 2020. Action Research in Software Engineering. Springer.
doi:10.1007/978-3-030-32610-4.

Steinmacher, 1., Gerosa, M., Conte, T.U., Redmiles, D.F., 2019. Over-
coming social barriers when contributing to open source software
projects. Computer Supported Cooperative Work 28. doi:10.1007/
s10606-018-9335-z.

Steinmacher, L.F., Graciotto Silva, M.A., Gerosa, M.A., Redmiles, D.F.,
2015. A systematic literature review on the barriers faced by newcomers
to open source software projects. Information and Software Technology
59. doi:10.1016/j.infsof.2014.11.001.

Tan, X., Zhou, M., Sun, Z., 2020. A first look at good first issues on GitHub,
in: Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), ACM. doi:1e.
1145/3368089.3409746.

Wickham, H., 2011. testthat: Get started with testing. The R Jounral 3.
doi:10.32614/RJ-2011-002.

Wickham, H., Bryan, J., 2023. R Packages: Organize, Test, Document, and
Share Your Code. O’Reilly.

Wolff, N.H., Vargas Zeppetello, L.R., Parsons, L.A., Aggraeni, 1., Battisti,
D.S., Ebi, K.L., Game, E.T., Kroeger, T., Masuda, Y.J., Spector, J.T.,
2021. The effect of deforestation and climate change on all-cause
mortality and unsafe work conditions due to heat exposure in berau,
indonesia: A modelling study. The Lancet Planetary Health 5. doi:10.
1016/52542-5196(21)00279-5.

WWEF, 2022. Forest foresight prospectus. https://www.wwf.nl/
globalassets/pdf/forest-foresight/wwf-forest-foresight-prospectus.
pdf.

Zeller, A., 2009. Why Programs Fail - A Guide to Systematic Debugging.
Academic Press.

A. Bakhshi et al.: Preprint submitted to Elsevier

Page 15 of 15

https://www.interpol.int/en/content/download/17367/file/Forestry%20Crime%20Fact%20sheet%202021.pdf
https://www.interpol.int/en/content/download/17367/file/Forestry%20Crime%20Fact%20sheet%202021.pdf
https://www.interpol.int/en/content/download/17367/file/Forestry%20Crime%20Fact%20sheet%202021.pdf
http://dx.doi.org/10.1016/j.jss.2011.12.007
http://dx.doi.org/10.1016/j.jss.2011.12.007
http://dx.doi.org/10.1016/j.jss.2011.06.071
http://dx.doi.org/10.1109/TSE.2019.2937025
http://dx.doi.org/10.1007/978-3-031-49266-2_3
http://dx.doi.org/10.1016/j.jss.2019.01.057
http://dx.doi.org/10.1016/j.jss.2019.01.057
http://dx.doi.org/10.1145/3383219.3383256
http://dx.doi.org/10.5334/jors.384
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1002/smr.2153
http://dx.doi.org/10.1109/APSEC51365.2020.00040
http://dx.doi.org/10.1109/APSEC51365.2020.00040
http://dx.doi.org/10.1007/s10664-018-9664-z
http://dx.doi.org/10.1007/s10664-018-9609-6
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1088/1748-9326/ad059e
http://dx.doi.org/10.1088/1748-9326/ad059e
http://dx.doi.org/10.1007/978-3-030-97899-0
http://dx.doi.org/10.1109/MS.2006.91
http://dx.doi.org/10.1145/2957792.2957801
http://dx.doi.org/10.1145/2957792.2957801
http://dx.doi.org/10.1007/978-3-642-02032-2_7
http://dx.doi.org/10.1007/978-3-030-32610-4
http://dx.doi.org/10.1007/s10606-018-9335-z
http://dx.doi.org/10.1007/s10606-018-9335-z
http://dx.doi.org/10.1016/j.infsof.2014.11.001
http://dx.doi.org/10.1145/3368089.3409746
http://dx.doi.org/10.1145/3368089.3409746
http://dx.doi.org/10.32614/RJ-2011-002
http://dx.doi.org/10.1016/S2542-5196(21)00279-5
http://dx.doi.org/10.1016/S2542-5196(21)00279-5
https://www.wwf.nl/globalassets/pdf/forest-foresight/wwf-forest-foresight-prospectus.pdf
https://www.wwf.nl/globalassets/pdf/forest-foresight/wwf-forest-foresight-prospectus.pdf
https://www.wwf.nl/globalassets/pdf/forest-foresight/wwf-forest-foresight-prospectus.pdf

