
Unified Operations for Variability in Space and Time
Sofia Ananieva,1 Sandra Greiner,2,3 Jacob Krüger,4,5 Lukas Linsbauer,6

Sten Grüner,7 Timo Kehrer,8,9 Thomas Kühn,10 Christoph Seidl,3 Ralf Reussner10
1FZI Research Center for Information Technology, 2University of Bayreuth,

3IT-University of Copenhagen, 4Otto-von-Guericke University Magdeburg, 5Ruhr-University Bochum,
6Technische Universität Braunschweig, 7ABB Corporate Research Center Germany, 8Humboldt University of Berlin,

9University of Bern, 10Karlsruhe Institute of Technology

ABSTRACT
Software and systems engineering is challenged by variability in
space (concurrent variations at a single point in time) and time (se-
quential variations due to evolution). Managing both dimensions of
variability independently is cumbersome and error-prone. A com-
mon foundation for operations on these dimensions is still missing,
hampering the comparison and integration of existing techniques
copingwith variability in space and time aswell as the design of new
ones. In this paper, we address this problem by systematically iden-
tifying, categorizing, and unifying operations from contemporary
tools and extending them to cope with both variability dimensions.
Based on our gained insights, we identify gaps and trade-offs in
current tools for managing variability in space and time, and discuss
open challenges. The unified operations establish a common founda-
tion that helps researchers and practitioners to gain a deeper under-
standing of existing techniques and tools for managing variability in
space and/or time, analyze and compare them, and design new ones.

CCS CONCEPTS
• Software and its engineering→ Software version control;
Software product lines; Software configuration management
and version control systems.

KEYWORDS
variability, product lines, version control

ACM Reference Format:
Sofia Ananieva, Sandra Greiner, Jacob Krüger, Lukas Linsbauer, Sten Grüner,
Timo Kehrer, Thomas Kühn, Christoph Seidl, Ralf Reussner. 2022. Unified
Operations for Variability in Space and Time. In Proceedings of the 16th Inter-
national Working Conference on Variability Modelling of Software-Intensive
Systems (VAMOS ’22), February 23–25, 2022, Florence, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3510466.3510483

1 INTRODUCTION
Industries producing variant-rich systems, such as the automotive
industry, need to keep track of different variations and their evo-
lution, for instance, to track faulty variations in past and future

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VAMOS ’22, February 23–25, 2022, Florence, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9604-2/22/02. . . $15.00
https://doi.org/10.1145/3510466.3510483

system generations. Yet, simply combining existing techniques for
managing either variability dimension, namely variability in space
(concurrent variations of a system) and variability in time (sequen-
tial generations of a system), is insufficient, since developers need
to deal with a heterogeneous tool landscape–which limits cross-
dimensional variability modeling and analyses. Variability in space
allows to customize a system to different requirements based on
features and is studied in the field of software product-line engi-
neering (SPLE) [4, 11, 46]. Variability in time refers to evolutionary
changes of a system, such as bug fixes or optimizations, and is
the focus of software configuration management (SCM) [14] and
version-control systems (VCSs) [50]. Dealing with both dimensions
of variability is essential for maintaining long-living systems [8, 26,
32, 41, 55, 58], such as automotive systems. While some variation
control systems (VarCSs) attempt to manage both variability dimen-
sions, their behavior varies widely [33]. For instance, these tools
employ different concepts or operations following different modali-
ties and paradigms. Therefore, it is difficult to compare approaches
or build tools that combine capabilities for both dimensions.

Although we recently proposed a conceptual model for unifying
concepts of both dimensions [2], a common understanding for the
operational management of these dimensions is still missing. For ex-
ample, developers need tomanage the evolution of the entire system
as well as of individual features to track volatile features or revert
faulty features to previous revisions (instead of the entire system).
Understanding contemporary tools that manage variability in space,
time, or both, as well as comparing their functionalities is essential
to support industry, tool builders, and researchers, avoid redundant
development, gain knowledge about different ways to operate on
both dimensions, and define adequate new tool functionality.

In this paper, we contribute unified operations that serve as a
conceptual foundation to address these needs. In detail, we offer
the following contributions: (a) We identify operations for managing
variability in space, time, and both by studying ten contemporary
tools. (b) We unify the identified operations, using the conceptual
model [2] as common data structure. We not only combine the be-
havior of existing tools, but also extend it to support both variability
dimensions simultaneously. (c) We analyze the operations’ feasibil-
ity, identify gaps and trade-offs in current tool support, and discuss
open challenges. Moreover, we publish an open-access repository com-
prising our artifacts (e.g., anonymized questionnaire responses).1
With these contributions, we aim to provide a common ground for
researchers as well as practitioners in the areas of SPLE and SCM to
analyze, compare, design, and implement techniques for managing
variability in space and time.

1https://doi.org/10.5281/zenodo.5825135

https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3510466.3510483
https://doi.org/10.5281/zenodo.5825135

VAMOS ’22, February 23–25, 2022, Florence, Italy Ananieva et al.

Problem Space

Fragment

Product

Space Concepts

Time ConceptsUnified Concepts

*

*

<<derive>>

<<derive>>

*

Option

*

*
Feature Option

System Revision Feature Revision

Revision

Feature

*

 *

* successorspredecessors *

*

*

enables *

Space & Time Concepts

* Constraint

*
*

Configuration

Unified System

Mapping

*

* enables
refs

Solution Space

Figure 1: The unified conceptual model [2].

Concrete advantages of a tool that supports the unified oper-
ations are: i) a more homogeneous tool landscape, since a single
tool suffices to manage both dimensions, which are highly inter-
twined; ii) tracking revisions (time) per feature (space) enables
additional functionalities, such as rolling back individual (faulty)
features instead of a system-wide rollback; and iii) analyses across
both dimensions, such as the volatility (i.e., frequency of change) of
each feature, no longer require expensive or approximate mining
techniques. These advantages enable new possibilities for DevOps
pipelines, as changes are precisely mapped onto features, which,
for example, enables rejecting commits that modify features or
products that were not supposed to be modified.

2 BACKGROUND
In this section, we explain the variability dimensions and provide
an overview of the unified conceptual model.

Variability Dimensions. In SCM [35], a VCS [50] manages the
evolution of a system via revisions that represent the state of the
system at different points in time, thus capturing variability in time.
Moreover, a system may allow for different configurations. This in-
troduces variability in space, which is addressed in SPLE [4, 11, 46].
A variability model [6, 13, 22, 39], such as a feature model, docu-
ments the features of a product line. Features specify common or dis-
tinguishing functionality of a product. A configuration is a selection
that assigns values (typically Boolean) to the configurable features.
To implement a variable system and derive customized products
based on a configuration, a variability mechanism is needed, such
as an annotative mechanism (e.g., a preprocessor) [4]. Although
established tools exist to target variability in space (SPLE) or time
(VCS) in isolation, both dimensions are highly intertwined [8, 60],
requiring sophisticated support for their joint maintenance.

Unified Conceptual Model.We [2] have proposed a conceptual
model for unifying concepts of variability in space and time, shown
in Figure 1. The right side of the model covers concepts of the
problem space (i.e., domain abstraction), while the left side covers
concepts of the solution space (i.e., the implementation) [46]. The
Unified System is the core concept containing most of the other
concepts. Options represent abstract configuration possibilities in
terms of Feature Options (i.e., Features and Feature Revisions)
or System Revisions. Constraints restrict which combinations of
Feature Options are valid. Fragments describe the implementation
of a Unified System on an arbitrary level of granularity (e.g., a line
of text or a file). Mappings connect Fragments and Options, for

Operation
Unification

Operation
 Identification

Expert
Survey

Tool
Selection

Tools
Use Case

Questionnaire
Use Case
Mappings

+
21 3

Conceptual
Model

Unified
Operations

Operation
Signatures

+
4

Figure 2: Unification process.

Table 1: Distinguishing concepts of the selected tools.

Tool
Concept Feature Constraint Feature

Revision
System
Revision

FeatureIDE [23, 36] — —
VTS [57] — — —
SiPL [24, 43, 44] — —
SVN [45] — — —
Git [34] — — —
SuperMod [52, 53] —
DarwinSPL [40] —
DeltaEcore [54, 55] —
ECCO [15, 16, 31] — —
VaVe [3] —

instance, via some form of logical expression. Deriving a Product
from theUnified System requires a Configuration. Concepts belong
to either variability in space (i.e., Feature Option, Feature, and
Constraint), variability in time (i.e., Revision and System Revision),
to both dimensions (i.e., Feature Revision), or are unified concepts
of either variability in space, time, or both (i.e., Unified System,
Option,Mapping, Configuration, Fragment, and Product).

3 SCOPE AND UNIFICATION PROCESS
In this section, we set the scope of this work and explain the em-
ployed unification process shown in Figure 2.
Scope.Weare concernedwith tool-based variabilitymanagement [4]:
We considered tools that i)manage variability in space, time, or both;
and ii) implement concepts of both problem and solution space. We
considered operations that i) operate on the same level of abstrac-
tion as the unified conceptual model [2]; and ii) modify the system or
create mutable output from it.
Tool Selection (Step ①). Recent studies [2, 20, 33] investigated
relevant tools, which influenced our tool selection. Table 1 shows
our tool selection and the distinguishing concepts. FeatureIDE, VTS,
and SiPL manage variability in space via features and (except for
VTS) constraints. SVN andGitmanage variability in time via system
revisions. SuperMod and DarwinSPL support variability in space
and time via features, constraints, and system revisions. DeltaEcore,
ECCO, and VaVe manage variability in space and time via feature
revisions. We consider combinations of tools (e.g., FeatureIDE and
Git) as implicitly covered by inspecting each tool individually.
Expert Survey (Step ②).We conducted a survey with experts of
the selected tools based on questionnaires. For each tool, we invited
one expert that was involved in the conception or implementation
of the tool. All of the tool experts were researchers from academia.
By involving tool experts, we elicited current, detailed, and reliable
information.We asked whether and how a given set of use cases can
be covered by a tool, for inputs, outputs, pre and post-conditions of

Unified Operations for Variability in Space and Time VAMOS ’22, February 23–25, 2022, Florence, Italy

Table 2: Categorization: Predicates.

Predicate

Tool

Fe
at
ur

eI
D
E

V
T
S

Si
PL

SV
N

G
it

Su
pe

rM
od

D
ar
w
in
SP

L

D
el
ta
Ec

or
e

EC
C
O

V
aV

e

Complete Configuration — —
Valid Configuration — —
Well-Formed Product — — — — — — —
Valid Expression1 — — — — — — — — — —

Predicate is either evaluated or not —. 1Required for unified operations.

each use case, a description of its semantics in the tool, and for any
further use cases a tool may address. Exemplary use cases are the
addition of a feature or constraint, or the integration of a modified
product into a unified system. For SVN and Git, we completed the
questionnaires ourselves due to their detailed documentations. This
step resulted in a use case mapping per tool.

Identification (Step ③). Based on the use case mappings and feed-
back of the tool experts, we collected operations for managing
variability in space, time, or both from each tool. We mapped the
inputs and outputs to the concepts of the unified conceptual model
to categorize operations according to their signatures and seman-
tics. To avoid redundancy and ambiguity, we defined categories
with each covering a single concern only (e.g., one for the deriva-
tion of a product and one for the derivation of a partial product
line), named each category, and specified the signature of its opera-
tion (i.e., name, input, and output). We used the same procedure to
identify predicates for pre and post-conditions of tool operations.

Unification (Step ④). Based on the identified and categorized
operations, we unified the behavior of operations (including the
predicates used in pre- and post-conditions) to combine the capa-
bilities of existing tools while avoiding redundancy and ambiguity.
Furthermore, we extended them to both variability dimensions in
cases where only one was supported.

4 IDENTIFIED AND UNIFIED OPERATIONS
While examining the behavior of the identified operations and
discussing with the tool experts, we found that operations can be
classified according to the edit modality and edit paradigm. The
edit modality describes how a unified system can be edited: either
directly (direct editing) or via well-defined views [5, 10] (view-based
editing). The edit paradigm describes the development of a unified
system. Product-oriented development is closer to clone& own [15,
28, 48] as a user focuses on a single product. Platform-oriented
development is closer to traditional SPLE, since the entire platform
(i.e., the unified system) must be considered. In this section, we
present the identified predicates and operations (Step ③ in Figure 2),
discuss their commonalities and differences, and describe their
unification (Step ④ in Figure 2).

4.1 Predicates
Predicates evaluate to true or false and are used in pre and post-
conditions of operations. Table 2 categorizes the identified predi-
cates. Figure 3 shows the definitions of all unified predicates.

Predicate: Complete Configuration. Checks whether all options
(i.e., features and revisions) are bound in a configuration. Intuitively,

Predicate: Complete Configuration
Input: Unified System 𝑈𝑆 , Configuration 𝑐

Configuration 𝑐 is complete, if and only if it selects one system re-
vision 𝑠𝑟 , either selects or deselects every feature 𝑓𝑠𝑟 enabled by 𝑠𝑟 ,
and selects at least one feature revision 𝑓 𝑟 𝑓𝑠𝑟 enabled by 𝑠𝑟 for each
selected feature 𝑓𝑠𝑟 .

complete

Predicate: Valid Configuration
Input: Unified System 𝑈𝑆 , Configuration 𝑐

Configuration 𝑐 is valid, if and only if all features in 𝑐 exist in 𝑈𝑆 and
are either selected 𝑓 ∈ 𝑐 or deselected ¬𝑓 ∈ 𝑐 and never both, for any
deselected feature ¬𝑓 ∈ 𝑐 no feature revision 𝑓 𝑟 𝑓 is selected in 𝑐 , if 𝑐
selects a system revision 𝑠𝑟 in 𝑈𝑆 , then
• all selected features 𝑓 ∈ 𝑐 and feature revisions 𝑓 𝑟 𝑓 ∈ 𝑐 are enabled
by 𝑠𝑟 , and

• for no constraint 𝑐𝑡𝑠𝑟 enabled by 𝑠𝑟 , formula 𝑐∧𝑐𝑡𝑠𝑟 is unsatisfiable.

valid

Predicate: Valid Expression
Input: Unified System 𝑈𝑆 , System Revision 𝑠𝑟 , Formula 𝑒

An arbitrary propositional formula 𝑒 over feature options is valid for
a given system revision 𝑠𝑟 , if and only if there is no constraint 𝑐𝑡𝑠𝑟
enabled by 𝑠𝑟 where 𝑒 ∧ 𝑐𝑡𝑠𝑟 is unsatisfiable.

validExpr

Predicate: Well-Formed Product
Input: Product 𝑝

Product 𝑝 is well-formed, if and only if no fragment 𝑓 𝑡 ∈ 𝐹𝑇𝑝 refer-
ences a fragment 𝑓 𝑡 ′ ∉ 𝐹𝑇𝑝 , where 𝐹𝑇𝑝 denotes the fragments from
which 𝑝 was constructed.

wellformed

Figure 3: Overview of the predicates.

a Complete (or full) Configuration is one for which no options can
(or should) be (de)selected anymore. An incomplete configuration
is referred to as partial. While the semantics are well-understood in
space and used uniformly in SPLE, they are not obvious when also
considering the time dimension. In FeatureIDE and SiPL, a config-
uration is complete in space if every feature in the unified system is
either selected or deselected. In SVN andGit, a configuration is com-
plete in time if exactly one system revision is selected. InDeltaEcore,
ECCO, and VaVe, which combine variability in space and time via
feature revisions, a configuration is complete if every feature is
either selected or deselected and, for every selected feature, exactly
one feature revision is selected. ECCO allows to select more than
one feature revision per selected feature for merging feature revi-
sions. In SuperMod and DarwinSPL, which combine variability in
space and time via features and system revisions, a configuration
is complete if exactly one system revision is selected and every en-
abled feature in that system revision is either selected or deselected.

Predicate: Valid Configuration. Checks whether a configuration
violates any constraints. Intuitively, a Valid Configuration is one
that does not violate any (explicit or implicit) constraints. Again,
the semantics are well-understood in space where constraints are
specified explicitly (e.g., via a variability model), but are not obvious
in time. In tools supporting variability in space, a configuration (a
set of selected and deselected features) is valid if it does not violate
any of the explicitly specified constraints. In tools supporting vari-
ability in time, a configuration (a selected system revision) is valid
if the selected system revision exists in the unified system. Tools
supporting variability in space and time via features and feature

VAMOS ’22, February 23–25, 2022, Florence, Italy Ananieva et al.

Table 3: Categorization: Direct editing operations.

Operations per
Concept

Add
Update
Delete

Fe
at
ur

eI
D
E

V
T
S2

Si
PL

1

SV
N

G
it

Su
pe

rM
od

1

D
ar
w
in
SP

L

D
el
ta
Ec

or
e

EC
C
O
2

V
aV

e2

Mapping A, U, D
Fragment A, U, D
Feature A — —

U, D — —
Feature Revision A, U, D — — — — — — —
System Revision A, U, D — — — — — —

A — — — —Constraint U, D — — — —
Configuration A, U, D — — — —

Direct editing supported , not supported , or concept does not exist —.
1Mapping is part of fragment. 2Fragment is part of mapping.

revisions extend configurations to additionally consist of feature re-
visions. Tools supporting variability in space and time via features
and system revisions require all selected features to be enabled by
the selected system revision and only those constraints that are
enabled by the selected system revision must not be violated.

Predicate: Well-Formed Product. Checks whether a product’s
implementation (i.e., a set of fragments) is well-formed with re-
spect to a set of rules (e.g., a grammar or meta-model) specific to
the type of fragment. For example, if fragments represent a UML
model, conformance with the corresponding meta-model and OCL
constraints could be verified. For Java code, its syntactic validity
could be checked. The only tools evaluating well-formedness of
products are SuperMod, DarwinSPL, and DeltaEcore. We consider
well-formedness independently of the type of fragment and express
it on the abstraction level of the conceptual model, where the only
structural information is the references between fragments.

Predicate: Valid Expression. Checks whether an expression over
feature options (i.e., features and feature revisions) violates any
constraints. Interestingly, it is not evaluated by any tool, but needed
for the unified operation iC.

4.2 Direct Editing Operations
Table 3 categorizes the identified direct editing operations: one add,
update, and delete operation per concept of a unified system. Tools
that support direct editing and variability in space usually allow to
add, update, and delete instances of the respective concepts. Tools
that support variability in time do not allow direct editing at all.
Tools that support both variability dimensions either do not allow
direct editing at all or only for the space dimension. For example,
DarwinSPL permits direct additions for space concepts but no direct
modifications or deletions to guarantee a reproducible history. An
exception isDeltaEcore, which permits direct editing of both dimen-
sions. Note that all direct editing operations are platform-oriented
and do not exhibit complex behavior that would require unification.

4.3 View-Based Operations
Table 4 categorizes the identified view-based operations and clas-
sifies them according to the edit paradigms. Internalize operations
modify the unified system based on a view. Externalize operations
create output from the unified system. View-based operations are
less flexible but offer a higher degree of automation than direct edit-
ing operations, since they essentially execute predefined sequences
of direct-editing operations (e.g., adding a feature automatically

Local
US

Remote
US

Clean
Domain

Clean
Product

iUS eUS

iD

ePeD

iP

iC
edit

Dirty
Product

Dirty
Domain

editiC

eD eP

Both paradigms

eP externalize Prod. iP internalize Prod.eD externalize Domain
iC internalize Changes

iD internalize Domain
eUS externalize Unified System iUS internalize Unified System

Product-oriented paradigm Platform-oriented paradigm

Figure 4: Execution sequences of unified operations.

creates a new revision and a corresponding mapping). Thus, they
ensure certain properties (e.g., an acyclic revision graph), prevent
modifications to past revisions (i.e., automatically creating new
revisions to map changes to), and reduce cognitive complexity.

While every operation is supported by at least one tool, there is
no tool that supports all operations. Also, there is no tool that imple-
ments any of the operations for both system revisions and feature
revisions. We found cases in which one operation of a tool covers
two separate concerns. For instance, VTS uses the operation get to
externalize a product (if a complete configuration is provided) or a
subset product line (if a partial configuration is provided), and put
to integrate the changes in both cases. SuperMod uses the operation
checkout as a two-step process: First, to externalize a domain at a cer-
tain point in time (i.e., system revision), and, second, to externalize a
product based on a feature selection via the externalized domain. In-
terestingly, Git’s branch and merge operations do not fit within our
scope criteria: The merge operation does not actually modify the
unified system, since the actual merge point in the revision graph is
created by the commit operation that follows the merge operation.
Similarly, the branch operation only creates an alias for a commit,
while the actual branch point in the revision graph is created by
the following commit operation. Finally, we excluded niche func-
tionalities, such as Git’s cherry-picking, sub-trees, or sub-modules.

Figure 4 shows an overview of the unified view-based operations
and possible execution sequences. We highlight product-oriented
operations in orange, platform-oriented operations in yellow, and
operations used in both paradigms in blue. A local instance of a uni-
fied system can be obtained from a remote unified system via 𝑒𝑈𝑆 .
To edit feature options and constraints of the local unified system,
an 𝑖𝐷 operation must follow an 𝑒𝐷 operation. The operation 𝑒𝐷

creates a clean view on the domain and can be performed repeat-
edly to switch between different system revisions of the domain.
Editing the domain view marks it as dirty. The modified view is
then internalized via 𝑖𝐷 . The operation 𝑒𝑃 creates a clean view on
the product and can be performed repeatedly to switch between dif-
ferent configurations. Performing edits marks the product as dirty.
The modified product can be internalized into the local unified sys-
tem via 𝑖𝑃 when following product-oriented development or via 𝑖𝐶
when following platform-oriented development. In the latter case,
changes are integrated in a fine-grained manner based on an expres-
sion provided by the user. The edit and 𝑖𝐶 cycle can be performed
repeatedly before transitioning back to the local unified system. The
operation 𝑖𝑈𝑆 integrates the contents of the local unified system
into the remote unified system. Figure 5 shows the definitions of all
unified view-based operations, which we discuss in the following.

Unified Operations for Variability in Space and Time VAMOS ’22, February 23–25, 2022, Florence, Italy

Table 4: Categorization: View-based operations.

Unified Operation Paradigm Feature-
IDE VTS SiPL SVN Git Super-

Mod
Darwin-

SPL
Delta-
Ecore ECCO VaVe

ID Name

eD Externalize Domain platform — — — — — checkout getCopyOf-
ValidModel — — —

iD Internalize Domain platform — — — — — commit - — — —
eP Externalize Product both compose get generate-

Product checkout checkout checkout derive-
Product

derive-
Product checkout derive-

Product
iP Internalize Product product — — — commit commit — — — commit —
iC Internalize Changes platform — put — — — commit — — — commit
eUS Externalize Unified System both deriveSubset-

ProductLine get — — clone — — — clone —
iUS Internalize Unified System both — put — — pull / push — — — pull / push —

Operation: Internalize Domain
Input: Unified System 𝑈𝑆 , System Revisions 𝑆𝑅,

Feature Options 𝐹𝑂 , Constraints 𝐶𝑇
Integrates the sets of feature options 𝐹𝑂 and constraints 𝐶𝑇 into the
unified system 𝑈𝑆 . Creates a new system revision 𝑠𝑟 ′ that is added as
successor of each system revision 𝑠𝑟 ∈ 𝑆𝑅, creating a merge point at
𝑠𝑟 ′ if |𝑆𝑅 | > 1, and a branch point if 𝑠𝑟 has a successor. All feature
options 𝐹𝑂 and constraints 𝐶𝑇 are enabled by 𝑠𝑟 ′. Creates new map-
pings 𝑚𝑠𝑟 ′ =𝑚𝑠𝑟 for all mappings 𝑚𝑠𝑟 in 𝑈𝑆 with 𝑠𝑟 ∈𝑆𝑅.

iD Operation: Externalize Domain
Input: Unified System 𝑈𝑆 , System Revisions 𝑆𝑅
Output: Feature Options 𝐹𝑂 , Constraints 𝐶𝑇
Returns the sets of feature options 𝐹𝑂 =

⋃
𝑠𝑟∈𝑆𝑅 𝐹𝑂𝑠𝑟 and constraints

𝐶𝑇 =
⋃

𝑠𝑟∈𝑆𝑅 𝐶𝑇𝑠𝑟 , where 𝐹𝑂𝑠𝑟 and 𝐶𝑇𝑠𝑟 are the feature options and
constraints enabled by the system revision 𝑠𝑟 ∈ 𝑆𝑅 in the unified sys-
tem 𝑈𝑆 .

eD

Operation: Externalize Product
Input: Unified System 𝑈𝑆 , Configuration 𝑐
Pre-condition: valid(𝑈𝑆, 𝑐) ∧ complete(US,c)
Output: Product 𝑝
Post-condition: wellformed(𝑝)
Creates a well-formed product 𝑝 from a complete and valid config-
uration 𝑐 . Selects all mappings 𝑀 ′ = {𝑚′ ∈ 𝑀 | 𝑐 ⇒ 𝑚′ } from the
mappings 𝑀 in the unified system 𝑈𝑆 implied by 𝑐 and collects their
fragments 𝐹𝑇𝑚′ into 𝐹𝑇𝑝 =

⋃
𝑚′∈𝑀 ′ 𝐹𝑇𝑚′ to create the product 𝑝 .

eP

Operation: Internalize Product
Input: Unified System 𝑈𝑆 , Product 𝑝
Pre-condition: wellformed(𝑝) ∧ valid(𝑈𝑆, 𝑐𝑝)
Updates the unified system 𝑈𝑆 to additionally cover product 𝑝 . Cre-
ates a new system revision 𝑠𝑟 ′ and adds it as successor of the system
revision in 𝑐𝑝 . Creates a new feature revision 𝑓 𝑟 ′

𝑓
for every feature

𝑓 in configuration 𝑐𝑝 that is either new (and added to 𝑈𝑆) or was
changed in product 𝑝 . Adds 𝑓 𝑟 ′

𝑓
as successor to every feature revi-

sion 𝑓 𝑟 𝑓 of 𝑓 selected in 𝑐𝑝 , creating a merge point if multiple were
selected, and a branch point if 𝑓 𝑟 𝑓 has a successor. Enables all new
and all unchanged features and feature revisions appearing in the
configuration 𝑐𝑝 . Adds all fragments 𝐹𝑇𝑝 of product 𝑝 to 𝑈𝑆 and adds
new mappings from 𝑠𝑟 ′ to each fragment 𝑓 𝑡 ∈ 𝐹𝑇𝑝 .

iP

Operation: Externalize Unified System
Input: Unified System 𝑈𝑆 , Configuration 𝑐
Pre-condition: valid(𝑈𝑆, 𝑐)
Output: Unified System 𝑈𝑆 ′

Creates a new unified system 𝑈𝑆 ′ from the existing unified system
𝑈𝑆 and the (partial) valid configuration 𝑐 by selecting only those
features, mappings, fragments, and revisions (including their predeces-
sors) that are not contradicted by 𝑐 .

eUS

Operation: Internalize Unified System
Input: Unified System 𝑈𝑆 , Unified System 𝑈𝑆 ′

Integrates another unified system 𝑈𝑆 ′ into an existing unified system
𝑈𝑆 by merging their fragments, mappings, features, constraints, and
revisions (including their relations) creating their union.

iUS

Operation: Internalize Changes
Input: Unified System 𝑈𝑆 , Product 𝑝 , Expression 𝑒 over Feature Options 𝐹𝑂
Pre-condition: validExpr(𝑈𝑆, 𝑠𝑟𝑐𝑝 , 𝑒) ∧ (𝑐𝑝 ⇒ 𝑒) ∧wellformed(𝑝)
Integrates changes made to a product 𝑝 (with a complete and valid configuration 𝑐𝑝) into the unified system 𝑈𝑆 . Determines the set of fragments
that were added 𝐹𝑇 +, remained unchanged 𝐹𝑇𝑜 and were removed 𝐹𝑇 − from product 𝑝 . Creates a new system revision 𝑠𝑟 ′. Creates new feature
revision 𝑓 𝑟 ′

𝑓
enabled by 𝑠𝑟 ′ for each positive feature 𝑓 appearing in expression 𝑒 . Adds 𝑠𝑟 ′ as successor to the system revision 𝑠𝑟 in 𝑐𝑝 , such

that it enables the same features and feature revisions as 𝑠𝑟 (except those succeeded by any of the new feature revisions). Adds each new feature
revision 𝑓 𝑟 ′

𝑓
as successor to every feature revision 𝑓 𝑟 𝑓 of 𝑓 selected in 𝑐𝑝 , creating a merge point if multiple were selected, and a branch point if

𝑓 𝑟 𝑓 has a successor. Creates new mappings 𝑚′
𝑠𝑟 ′,𝑓 𝑡 for every fragment 𝑓 𝑡 based on its mapping 𝑚𝑠𝑟,𝑓 𝑡 in the previous system revision 𝑠𝑟 , such

that 𝑚′
𝑠𝑟 ′,𝑓 𝑡+ =𝑚𝑠𝑟,𝑓 𝑡+∨𝑒 , for each 𝑓 𝑡+ ∈ 𝐹𝑇 +; 𝑚′

𝑠𝑟 ′,𝑓 𝑡𝑜 =𝑚𝑠𝑟,𝑓 𝑡𝑜 , for each 𝑓 𝑡𝑜 ∈ 𝐹𝑇𝑜 ; and 𝑚′
𝑠𝑟 ′,𝑓 𝑡− =𝑚𝑠𝑟,𝑓 𝑡− ∧¬𝑒 , for each 𝑓 𝑡− ∈ 𝐹𝑇 − .

iC

Platform-oriented paradigm Product-oriented paradigm Both paradigms

Figure 5: Overview of the unified operations.

Operation: Externalize Domain (𝑒𝐷). Produces a view of the
domain (i.e., feature options and constraints) at one or multiple
points in time (i.e., system revisions) that can be edited, merged, or
used to create configurations. It is supported by SuperMod (as part
of the checkout operation) and DarwinSPL. The behavior of the
two tools coincides and considers both variability dimensions via
features and system revisions. Note that we allow multiple system
revisions as input to support merging of revisions.

Operation: Internalize Domain (𝑖𝐷). Integrates changes per-
formed on a view of the domain (i.e., feature options and constraints
produced by the operation eD) into the unified system. It is sup-
ported only by SuperMod. While DarwinSPL supports the creation
of views on the domain via eD, it does not provide the view-based op-
eration iD for modifying the domain. For the unification, we do not
allow the user to add new feature revisions, so that only feature revi-
sions of the previously externalized view may be used to formulate

VAMOS ’22, February 23–25, 2022, Florence, Italy Ananieva et al.

constraints. If a system revision 𝑠𝑟 specified during 𝑒𝐷 already had a
successor, it becomes a branch point (i.e., has multiple successors). If
multiple system revisions were specified during 𝑒𝐷 , the new system
revision 𝑠𝑟 ′ becomes a merge point (i.e., has multiple predecessors).

Operation: Externalize Product (𝑒𝑃). Produces a product (i.e.,
view) from the fragments contained in the unified system based on
a complete and valid configuration. In space, this is usually referred
to as product derivation while in time it is referred to as checkout. It
is supported by all tools, and in essentially the same manner. First,
mappings whose expressions are satisfied by the configuration are
selected. The differences between tools are whether configurations
and mappings contain system revisions, features, feature revisions,
or any combination thereof. Afterwards, the product is constructed
using the fragments in the selected mappings. In SVN or Git, only
products that have been explicitly internalized before can be exter-
nalized via iP (referred to as extensional versioning [12]), since the
only available option concept is that of a system revision (of which
only one can appear in a valid configuration). Tools that support
platform-oriented development (e.g., via direct editing or the iC
operation) can externalize products that have not been internalized
explicitly before (referred to as intensional versioning [12]), since
multiple options can be combined in valid configurations. An excep-
tion is ECCO, which does not support platform-oriented develop-
ment, but still supports intensional versioning. For the selection of
mappings (and consequently fragments), ECCO performs feature lo-
cation [37] to identify required fragments in previously internalized
products and reuses them in new products during externalization.

Operation: Internalize Product (𝑖𝑃). Integrates a product into
the unified system. It is supported by the tools SVN, Git, and ECCO.
All three tools create a new system revision 𝑠𝑟 ′ and then map the
fragments of the internalized product to 𝑠𝑟 ′. For SVN andGit, which
deal only with variability in time, this is all that is needed. ECCO
supports variability in space and time (via features and feature revi-
sions) and requires that modified features are marked in a product’s
configuration to indicate that a new feature revision must be cre-
ated for them. The new system revision enables exactly the feature
options that appear in the configuration of the product. Thereby,
the feature revisions are tracked explicitly via the unified operation,
in contrast to SVN and Git, where this information would have to
be documented manually in the commit message. If more than one
revision of the same feature is selected in the externalized product,
the new feature revision becomes a successor to all of them, and
thus a merge point in the respective feature revision graph. If the
system revision or any of the feature revisions in the configuration
of the externalized product already had a successor, they become
branch points in their respective revision graphs.

Operation: Internalize Changes (𝑖𝐶). Integrates changes per-
formed on a product into the unified system based on a manually
provided expression. It is supported by SuperMod, VTS, and VaVe.
The user provides as input an expression over features, which Su-
perMod and VTS refer to as ambition. In SuperMod, the expression
is essentially a partial configuration (i.e., conjunction of positive or
negative features); inVTS, it is an arbitrary expression over features;
and in VaVe, it consists of a single feature. SuperMod ensures that

the expression does not violate any constraints via the Valid Config-
uration predicate.VTS does not ensure the validity of the expression,
but if it did, this predicate would not suffice, since the expression can
be arbitrary. Therefore, the predicate Valid Expression is required to
allow the combination of the behavior of all tools in our unification.
Interestingly, SuperMod and VTS enforce opposing pre-conditions.
In VTS, the expression 𝑒 for 𝑖𝐶 must imply the configuration 𝑐𝑝 of
product 𝑝 (𝑒 ⇒ 𝑐𝑝) to prevent the user from affecting configura-
tions that are not visible in the current view. The exact opposite
is the case in SuperMod (𝑐𝑝 ⇒ 𝑒), where changes made on a prod-
uct must affect at least that product. The suitability of the VTS
pre-condition for the unified 𝑖𝐶 operation is arguable. Since, per
definition of 𝑒𝑃 , a view represents a product based on a complete
configuration, the pre-condition of VTS boils down to 𝑒 ⇔ 𝑐 . This
would limit the effect an edit can have to the exact product on
which it was performed. Therefore, we exclude this pre-condition
from the unification. Despite the conflicting pre-conditions, the in-
tention and behavior of this operation across the tools is essentially
the same. Each tool computes the added, unchanged, and removed
fragments and adds or updates the respective mappings. If more
than one feature revision of the same feature was externalized in
the product, the new feature revision becomes a merge point in the
feature revision graph. If the system revision or any of the feature
revisions of the externalized product already had a successor, they
become branch points in their respective revision graphs.

Operation: Externalize Unified System (𝑒𝑈𝑆). Derives a new
instance of a unified system𝑈𝑆 ′ that is a full or partial copy of the
original unified system𝑈𝑆 , depending on the given (complete or
partial) configuration 𝑐 . It is supported by FeatureIDE,Git, VTS, and
ECCO. The tools dealing with variability in space behave identically.
Feature options without assigned values (i.e., neither selected nor
deselected in the provided partial configuration) remain variable.
Feature options with a positive value (i.e., selected) are retained and
set to true. Feature options with a negative value (i.e., deselected) are
removed and substituted by false in mapping expressions and con-
straints. Mappings whose expression cannot be satisfied anymore
(i.e., contradicts configuration 𝑐) and the corresponding fragments
are removed. In Git, only system revisions that are selected in the
configuration and their ancestors are retained. If no system revision
is selected, then all revisions are retained. In our unification, we
transfer the behavior from Git to also feature revisions, since there
is no conflicting behavior in how ECCO deals with feature revisions.

Operation: Internalize Unified System (𝑖𝑈𝑆). Integrates another
instance of a unified system 𝑈𝑆 ′ into the current unified system
𝑈𝑆 , essentially creating their union. It is supported by the tools Git,
VTS, and ECCO. In Git, it maps to the push and pull operations.
It merges all system revisions, including their predecessors and
successors. In ECCO, all features and feature revisions are merged.
In ECCO and Git, all fragments and mappings are merged. In VTS,
this operation corresponds to any execution of the put operation
that follows a get operation with a partial configuration as param-
eter. In this case, the put operation simply overwrites fragments
and mappings in the unified system𝑈𝑆 with the ones in the unified
system𝑈𝑆 ′ (which is not a desirable behavior for the unification).

Unified Operations for Variability in Space and Time VAMOS ’22, February 23–25, 2022, Florence, Italy

1 #ifdef USE_RAM
2 #ifdef CACHE_NAMES
3 char sort_short[SORT_LIMIT][FILE_NAME_LIMIT];
4 #endif
5 #endif
6 uint8_t sort_order[SORT_LIMIT];

Listing 1: Initial revision.

1 #ifdef USE_RAM
2 #ifdef CACHE_NAMES
3 #ifdef DYNAMIC_RAM
4 char **sort_names , ** sort_short;
5 #else
6 char sort_names[SORT_LIMIT][FILE_NAME_LIMIT];
7 char sort_short[SORT_LIMIT][FILE_NAME_LIMIT];
8 #endif
9 #endif
10 #endif
11 #ifdef DYNAMIC_RAM
12 uint8_t* sort_order;
13 #else
14 uint8_t sort_order[SORT_LIMIT];
15 #endif

Listing 2: Final revision.

5 ILLUSTRATING EXAMPLE
We now discuss an illustrating example based on an adapted excerpt
of the highly variable 3D-printer firmware Marlin [33]. The initial
revision of the system is shown in Listing 1. In the solution space,
each line of code is a Fragment. In the problem space, macros used
in the preprocessor annotations are Options, namely the Features
USE_RAM (UR) and CACHE_NAMES (CN). The first system revision
enables the features CN and UR as well as the constraint that name
caching requires the use of RAM (𝐶𝑁1 ⇒ 𝑈𝑅1). The preprocessor
annotations representMappings that connect solution and problem
space. For instance, the array sort_order in Line 6 of Listing 1
is present in the first system revision in each configured product.
The array sort_short in Line 3 is introduced in the same system
revision, but only present if the features CN and UR are selected in
their first revision. The final revision in Listing 2 allows for the
use of dynamic RAM as an additional option where memory is
allocated dynamically by using pointers (Lines 4 and 12). In addi-
tion, an array for sorting names is added in Line 6, which modifies
the implementation of the features UR and CN, and, thus, can be
considered a revision of these features. Next, we demonstrate how
the unified operations can be used to gradually transition from the
initial state𝑈𝑆𝑖𝑛𝑖𝑡 to the final state𝑈𝑆𝑓 𝑖𝑛𝑎𝑙 .

Change domain. First, we extend the domain with the new fea-
ture DR and a corresponding constraint. We create an editable
view on the domain at system revision 𝑠𝑟1 by executing the op-
eration 𝑒𝐷 (𝑈𝑆𝑖𝑛𝑖𝑡 , {𝑠𝑟1}). This results in the set of feature options
{𝑈𝑅1,𝐶𝑁1} and the set of constraints {𝐶𝑁1 ⇒ 𝑈𝑅1}. We add the
feature DR and the constraint 𝐷𝑅 ⇒ 𝑈𝑅1, and internalize the up-
dated domain view via 𝑖𝐷 (𝑈𝑆𝑖𝑛𝑖𝑡 , {𝑠𝑟1}, {𝑈𝑅1,𝐶𝑁1, 𝐷𝑅}, {𝐶𝑁1 ⇒
𝑈𝑅1, 𝐷𝑅 ⇒ 𝑈𝑅1}). This operation adds a new system revision 𝑠𝑟2
to the unified system as successor of 𝑠𝑟1 while enabling DR, the
respective constraint, as well as all unmodified features and con-
straints. Additionally, all mappings containing 𝑠𝑟1 are copied and
𝑠𝑟1 is replaced by 𝑠𝑟2 in their expressions.

Change implementation via product-oriented editing. We
then use 𝑒𝑃 (𝑈𝑆2, {𝑠𝑟2,𝑈𝑅1,𝐶𝑁1, 𝐷𝑅}) to obtain a product 𝑝 com-
prising Lines 3 and 6 in Listing 1 to which we can add the im-
plementation of DR. We delete Lines 3 and 6 in Listing 1 from
product 𝑝 and add Lines 4 and 12 in Listing 2 to obtain the modi-
fied product 𝑝′, and update its configuration (to mark the modified
feature DR) from {𝑈𝑅1,𝐶𝑁1, 𝐷𝑅} to {𝑈𝑅1,𝐶𝑁1, 𝐷𝑅∗}. We then exe-
cute 𝑖𝑃 (𝑈𝑆2, 𝑝′) to internalize the modified product 𝑝′, which leads
to the new system revision 𝑠𝑟3 that enables the new feature revision
𝐷𝑅1 of feature 𝐷𝑅. All fragments of the internalized product are
mapped to the new system revision. To add Line 6 in Listing 2, we
externalize another product 𝑝2 via 𝑒𝑃 (𝑈𝑆3, {𝑠𝑟3,𝑈𝑅1,𝐶𝑁1,¬𝐷𝑅}),
which contains Lines 7 and 14. We then add Line 6 to product 𝑝2
to obtain the modified product 𝑝′2. We modify its configuration
from {𝑈𝑅1,𝐶𝑁1,¬𝐷𝑅} to {𝑈𝑅1,𝐶𝑁∗,¬𝐷𝑅} and use the operation
𝑖𝑃 (𝑈𝑆3, 𝑝′2) for internalization. This leads to the new system revi-
sion 𝑠𝑟4 that enables the new feature revision 𝐶𝑁2 of feature 𝐶𝑁 .

Change implementation via platform-oriented editing. Al-
ternatively to 𝑖𝑃 , we can use 𝑖𝐶 to internalize more fine-granular
changes to a product. We start with the same product 𝑝 , delete both
Lines 3 and 6 in Listing 1 and add Line 12, but not yet Line 4 in
Listing 2, to obtain the modified product 𝑝′′. We internalize 𝑝′′
with expression 𝐷𝑅 via 𝑖𝐶 (𝑈𝑆2, 𝑝′′, 𝐷𝑅). This adds a new system
revision 𝑠𝑟3 and the first feature revision𝐷𝑅1 to feature DR. The new
system revision 𝑠𝑟3 enables the new feature revision 𝐷𝑅1 and the
latest revisions𝑈𝑅1 and𝐶𝑁1 of the unmodified features𝑈𝑅 and𝐶𝑁 .
The new line is added to the unified system andmapped to𝐷𝑅1. The
mapping of the two deleted lines is appended with ∧¬𝐷𝑅, resulting
in mappings ((𝑠𝑟1 ∨ 𝑠𝑟2) ∧𝑈𝑅1 ∧𝐶𝑁1) ∨ (𝑠𝑟3 ∧𝑈𝑅1 ∧𝐶𝑁1 ∧¬𝐷𝑅)
and 𝑠𝑟1 ∨ 𝑠𝑟2 ∨ (𝑠𝑟3 ∧ ¬𝐷𝑅), respectively. We then edit product 𝑝′′
further by adding Line 4 to obtain product 𝑝′′′ and internalize it
via 𝑖𝐶 (𝑈𝑆3, 𝑝′′′,𝑈𝑅1 ∧𝐶𝑁1 ∧𝐷𝑅1). This creates another system re-
vision 𝑠𝑟4, a second feature revision for each feature, and maps the
new line to𝑈𝑅2 ∧𝐶𝑁2 ∧𝐷𝑅2. Finally, we externalize another prod-
uct 𝑝2 via 𝑒𝑃 (𝑈𝑆3, {𝑠𝑟3,𝑈𝑅1,𝐶𝑁1,¬𝐷𝑅}), which contains Lines 7
and 14, and add Line 6 to obtain the modified product 𝑝′′2 , which
we internalize via 𝑖𝐶 (𝑈𝑆4, 𝑝′′2 ,𝑈𝑅2 ∧ 𝐶𝑁2 ∧ ¬𝐷𝑅). This leads to
yet another new system revision 𝑠𝑟5 and the new feature revisions
𝑈𝑅3 and 𝐶𝑁3, but no new feature revision for 𝐷𝑅 (as it appears
negated). The newly added line is then mapped to the expression
𝑠𝑟5 ∧𝑈𝑅3 ∧𝐶𝑁3 ∧ ¬𝐷𝑅.

Distribution of features. Starting from the final unified system
𝑈𝑆𝑓 𝑖𝑛𝑎𝑙 in Listing 2, we derive another unified system contain-
ing the features UR and CN. By executing 𝑒𝑈𝑆 (𝑈𝑆𝑓 𝑖𝑛𝑎𝑙 , {¬𝐷𝑅}), we
obtain a unified system𝑈𝑆𝑒𝑥𝑡 containing all system revisions, fea-
tures UR and CN, and all of their feature revisions. Feature DR is
contradicted by the provided partial configuration and not retained.
Similarly, the mappings for Lines 4 and 12 are contradicted, and
therefore also excluded together with the Lines (i.e., fragments)
themselves. Lines 6, 7, and 14 are included, since their mappings are
not contradicted by the partial configuration. Additionally, mapping
𝑠𝑟5∧𝑈𝑅3∧𝐶𝑁3∧¬𝐷𝑅 (Line 6) is simplified to 𝑠𝑟5∧𝑈𝑅3∧𝐶𝑁3, map-
ping 𝑠𝑟1 ∨ 𝑠𝑟2 ∨ (𝑠𝑟3 ∧¬𝐷𝑅) (Line 14) is simplified to 𝑠𝑟1 ∨ 𝑠𝑟2 ∨ 𝑠𝑟3,
and mapping ((𝑠𝑟1∨𝑠𝑟2) ∧𝑈𝑅1∧𝐶𝑁1) ∨ (𝑠𝑟3∧𝑈𝑅1∧𝐶𝑁1∧¬𝐷𝑅)
is simplified to ((𝑠𝑟1 ∨ 𝑠𝑟2 ∨ 𝑠𝑟3) ∧𝑈𝑅1 ∧𝐶𝑁1). We internalize the
previously externalized unified system𝑈𝑆𝑒𝑥𝑡 into the initial unified

VAMOS ’22, February 23–25, 2022, Florence, Italy Ananieva et al.

system𝑈𝑆𝑖𝑛𝑖𝑡 to let it benefit from the new revisions of features𝑈𝑅

and 𝐶𝑁 . We execute 𝑖𝑈𝑆 (𝑈𝑆𝑖𝑛𝑖𝑡 ,𝑈𝑆𝑒𝑥𝑡), which extends the initial
unified system with the new system revisions up to 𝑠𝑟5, feature
revisions 𝑈𝑅2, 𝑈𝑅3, 𝐶𝑁2, and 𝐶𝑁3, and the corresponding Line 6
in Listing 2 that maps to 𝑠𝑟5 ∧𝑈𝑅3 ∧𝐶𝑁3.

6 DISCUSSION
The illustrating example shows how to apply the unified operations.
They support the same functionality as the analyzed tools and
advance the state of the art by providing capabilities for the unified
management of variability in space and time. Based on our gained
insights during the unification and while applying the operations to
the example, we identified trade-offs and open challenges in current
tool support that also impact the operations. In the following, we
discuss these trade-offs and provide guiding ideas.

Combination of Edit Paradigms. In none of the studied tools,
the developer is able to alternate between platform and product-
oriented editing. While projectional editing [7, 38, 51, 59], as im-
plemented in VTS, allows developers to switch between editable
product (eP) and (partial) platform (eUS) views, the integration of
the changes is always performed in a platform-orientedmanner (iC).
We suggest to allow to arbitrarily alternate between both paradigms,
since each has its distinct advantages. While platform-oriented de-
velopment supports a user in modifying the entire platform, this
task is cognitively demanding [33]. Product-oriented development
alleviates the developer from this burden, but has limited support
for intensional versioning [12]). Allowing the developer to switch
paradigms and choose the more suitable paradigm for a specific
development scenario would provide substantial benefits. The chal-
lenge is that, during product-oriented development, no fine-grained
mapping expressions are provided by the user. Therefore, additional
techniques are required, such as feature location [30, 37, 47] or fea-
ture trace recording [1, 9, 25].

Combination of Edit Modalities. VTS is the only tool we studied
that supports both view-based and direct editing. While mappings
can be edited arbitrarily via direct editing, editing mappings is not
well-supported via any view-based operation. Therefore, we sug-
gest to combine both edit modalities, but discourage direct editing
of concepts for variability in time (i.e., feature revisions and system
revisions) to prevent a (accidental) corruption of the history and
guarantee its preservation. The challenge is that direct editing is
only conveniently possible if an adequate and editable view, in-
cluding mappings (as opposed to a partial view without variability,
such as a product), of the contents of the unified system can be
provided. In VTS, this is the case, since it is limited to lines of text
(as fragments) and annotations (as mappings), which can easily be
edited directly. Some tools provide IDE support for dynamically
switching between editable product and different (partial) platform
views but are also limited to textual fragments [7, 38]. However, in
cases where different types of fragments are allowed, a universal
view that also includes editable mappings cannot be provided easily.

Threats to Validity. A threat to the construct and external validity
are the analyzed tools. While they follow different ideas, concepts,
modalities, and paradigms, there may still be other tools and opera-
tions, and thus ours may not be fully generalizable. A threat to the

internal validity is that we performed the unification on the abstrac-
tion level of the unified conceptualmodel, and thusmay havemissed
details regarding the behavior of tools. We mitigated this threat
by closely involving the tool experts and ensuring that the unified
operations can still cover the same edits as the individual tools.

7 RELATEDWORK
Several researchers elicited or defined processes, patterns, or op-
erations for the evolution of variability in space and in time [12,
17, 19, 21, 27–29, 42, 49, 56, 57]. Often, these operations have been
derived from observations in practice or from an individual tool.
For instance, Rubin et al. [49] derived a set of operations for re-
engineering cloned variants into a product-line. Hinterreiter et al.
[19] introduced local and distributed operations and scenarios for
feature-oriented development and evolution specifically in the in-
dustrial automation domain. As their work is based on ECCO, these
operations are covered by our unification. Projectional editing [59]
is the foundation of VTS and introduces (partial) views on variable
systems. Closely related to our work, Linsbauer et al. [33] com-
pare variation control systems, and identified the two general types
of operations internalization and externalization. We aligned our
work with these general types, but extended them considerably,
for instance, to distinguish between Internalize Changes or Inter-
nalize Product. Arguably, the closest work to ours is the uniform
version management proposed byWestfechtel et al. [60], combining
variability in space and time into one model. While it represents
research from two decades ago, the rather recent tool SuperMod
included in our analysis uses it as a foundation and builds on its con-
cepts. Hinterreiter et al. [18] compared and harmonized approaches
dealing with temporal feature modeling and also considers some
of our studied tools. However, they focus on feature modeling to
represent domain constraints, and thus are less generic.

8 CONCLUSION
In this paper, we presented unified operations for managing vari-
ability in space and time, which we systematically devised based
on a diverse set of tools. We provide a foundation for researchers
and practitioners to classify and compare their work, and guide
the design of novel techniques dealing with variability in space
and time. We identified gaps and trade-offs in current tools and
discussed open challenges. While direct editing offers the most flex-
ibility and allows for arbitrary changes, view-based operations offer
a higher degree of automation and are less prone to human errors.
The alteration between different edit paradigms and modalities is
potentially useful, but not yet supported by any tool. As future
work, we plan to tackle the identified gaps and challenges, and to
provide a reference implementation of the unified operations.

ACKNOWLEDGMENTS
This work has been supported by the German Research Founda-
tion within the projects VariantSync (KE 2267/1-1) and EXPLANT
(SA 465/49-3), the Federal Ministry of Economic Affairs and En-
ergy (BMWi) following a decision of the German Bundestag in
the context of the SofDCar project (grant agreement 19S21002I
and 19S21002K), and a fellowship within the IFI programme of the
German Academic Exchange Service (DAAD).

Unified Operations for Variability in Space and Time VAMOS ’22, February 23–25, 2022, Florence, Italy

REFERENCES
[1] Hadil Abukwaik, Andreas Burger, Berima Kweku Andam, and Thorsten Berger.

2018. Semi-Automated Feature Traceability with Embedded Annotations. In
International Conference on Software Maintenance and Evolution. IEEE, 529–533.

[2] Sofia Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Linsbauer,
Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, Sebastian
Krieter, Christoph Seidl, S. Ramesh, Ralf Reussner, and BernhardWestfechtel. 2020.
A Conceptual Model for Unifying Variability in Space and Time. In International
Systems and Software Product Line Conference. ACM, 1–12.

[3] Sofia Ananieva, Heiko Klare, Erik Burger, and Ralf Reussner. 2018. Variants and
Versions Management for Models with Integrated Consistency Preservation. In
International Workshop on Variability Modelling of Software-Intensive Systems.
ACM, 3–10.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer.

[5] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. 2010. Orthographic Software
Modeling: A Practical Approach to View-Based Development. In Evaluation of
Novel Approaches to Software Engineering. Springer, 206–219.

[6] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
International Conference on Software Product Lines. Springer, 7–20.

[7] Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL: Projectional
Editing of Product Lines. In International Conference on Software Engineering.
IEEE, 563–574.

[8] Thorsten Berger, Marsha Chechik, Timo Kehrer, and Manuel Wimmer. 2019. Soft-
ware Evolution in Time and Space: Unifying Version and Variability Management
(Dagstuhl Seminar 19191). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.

[9] Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer,
Jeffrey M. Young, and Lukas Linsbauer. 2021. Feature Trace Recording. In Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 1007–1020.

[10] Erik Johannes Burger. 2013. Flexible Views for View-Based Model-Driven Devel-
opment. In International Doctoral Symposium on Components and Architecture.
ACM, 25–30.

[11] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[12] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys 30, 2 (1998), 232–282.

[13] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variabil-
ity Modeling Approaches. In International Workshop on Variability Modeling of
Software-Intensive Systems. ACM, 173–182.

[14] Jacky Estublier. 2000. Software Configuration Management: A Roadmap. In
Conference on The Future of Software Engineering. ACM, 279–289.

[15] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Develop-
ing Software Variants. In International Conference on Software Maintenance and
Evolution. IEEE, 391–400.

[16] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO Tool: Extraction and Composition for Clone-and-Own. In
International Conference on Software Engineering. IEEE, 665–668.

[17] Sten Grüner, Andreas Burger, Tuomas Kantonen, and Julius Rückert. 2020. In-
cremental Migration to Software Product Line Engineering. In Conference on
Systems and Software Product Line. ACM, 1–11.

[18] Daniel Hinterreiter, Michael Nieke, Lukas Linsbauer, Christoph Seidl, Herbert
Prähofer, and Paul Grünbacher. 2019. Harmonized Temporal Feature Modeling to
Uniformly Perform, Track, Analyze, and Replay Software Product Line Evolution.
In International Conference on Generative Programming: Concepts and Experiences.
ACM, 115–128.

[19] Daniel Hinterreiter, Herbert Prähofer, Lukas Linsbauer, Paul Grünbacher, Florian
Reisinger, and Alexander Egyed. 2018. Feature-Oriented Evolution of Automation
Software Systems in Industrial Software Ecosystems. In International Conference
on Emerging Technologies and Factory Automation. IEEE, 107–114.

[20] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software Product
Line Engineering: A Practical Experience. In International Systems and Software
Product Line Conference. ACM, 164–176.

[21] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In International
Conference on Software Product Line. ACM, 61–70.

[22] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie-Mellon University.

[23] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas
Leich, Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A Tool Framework for
Feature-oriented Software Development. In International Conference on Software
Engineering. IEEE, 611–614.

[24] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2013. Consistency-Preserving
Edit Scripts in Model Versioning. In International Conference on Automated Soft-
ware Engineering. IEEE, 191–201.

[25] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
2021. Bridging the Gap Between Clone-and-Own and Software Product Lines. In
International Conference on Software Engineering: New Ideas and Emerging Results.
21–25.

[26] Jacob Krüger, Sofia Ananieva, Lea Gerling, and Eric Walkingshaw. 2020. Third In-
ternationalWorkshop on Variability and Evolution of Software-Intensive Systems.
In International Systems and Software Product Line Conference. ACM, 34:1–1.

[27] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs
of Clone- and Platform-Oriented Software Reuse. In Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 432–444.

[28] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A
Round-Trip Engineering Process Model for Adopting and Evolving Product Lines.
In International Systems and Software Product Line Conference. ACM, 2:1–12.

[29] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is My Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239–253.

[30] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software
Product Line Conference. ACM, 65–72.

[31] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017.
Variability Extraction and Modeling for Product Variants. Software and Systems
Modeling 16, 4 (2017), 1179–1199.

[32] Lukas Linsbauer, Somayeh Malakuti, Andrey Sadovykh, and Felix Schwägerl.
2018. 1st International Workshop on Variability and Evolution of Software-
Intensive Systems. In International Systems and Software Product Line Conference.
ACM, 294–294.

[33] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.
Concepts of Variation Control Systems. Journal of Systems and Software 171
(2021), 110796.

[34] Jon Loeliger and Matthew McCullough. 2012. Version Control with Git: Powerful
Tools and Techniques for Collaborative Software Development. O’Reilly.

[35] Stephen A. MacKay. 1995. The State of the Art in Concurrent, Distributed
Configuration Management. In International Workshop on Software Configuration
Management. Springer, 180–193.

[36] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[37] Gabriela K. Michelon, David Obermann, Lukas Linsbauer, Wesley K. G. Assunção,
Paul Grünbacher, and Alexander Egyed. 2020. Locating Feature Revisions in
Software Systems Evolving in Space and Time. In International Systems and
Software Product Line Conference. ACM, 14:1–14:11.

[38] Mukelabai Mukelabai, Benjamin Behringer, Moritz Fey, Jochen Palz, Jacob Krüger,
and Thorsten Berger. 2018. Multi-View Editing of Software Product Lines with
PEoPL. In International Conference on Software Engineering. ACM, 81–84.

[39] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
62–73.

[40] Michael Nieke, Gil Engel, and Christoph Seidl. 2017. DarwinSPL: An Integrated
Tool Suite for Modeling Evolving Context-Aware Software Product Lines. In
International Workshop on Variability Modelling of Software-Intensive Systems.
ACM, 92–99.

[41] Michael Nieke, Lukas Linsbauer, Jacob Krüger, and Thomas Leich. 2019. Interna-
tional Workshop on Variability and Evolution of Software-Intensive Systems. In
International Systems and Software Product Line Conference. ACM, 320–320.

[42] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wą-
sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution
of Variability Models and Related Software Artifacts: A Fresh Look at Evolu-
tion Patterns in the Linux Kernel. Empirical Software Engineering 21, 4 (2016),
1744–1793.

[43] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel
Ohrndorf. 2015. SiPL–A Delta-Based Modeling Framework for Software Product
Line Engineering. In International Conference on Automated Software Engineering.
IEEE, 852–857.

[44] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. 2019. Formal
Foundations for Analyzing and Refactoring Delta-Oriented Model-Based Soft-
ware Product Lines. In International Systems and Software Product Line Conference.
ACM, 207–217.

[45] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. 2008. Version
Control with Subversion: Next Generation Open Source Version Control. O’Reilly.

[46] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[47] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
InDomain Engineering, Product Lines, Languages, and Conceptual Models. Springer,

VAMOS ’22, February 23–25, 2022, Florence, Italy Ananieva et al.

29–58.
[48] Julia Rubin and Marsha Chechik. 2013. A Framework for Managing Cloned

Product Variants. In International Conference on Software Engineering. IEEE, 1233–
1236.

[49] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned Product
Variants: From Ad-Hoc to Managed Software Product Lines. International Journal
on Software Tools for Technology Transfer (2015), 627–646.

[50] Nayan B. Ruparelia. 2010. The History of Version Control. SIGSOFT Software
Engineering Notes 35, 1 (2010), 5–9.

[51] Johannes Schröpfer, Thomas Buchmann, and Bernhard Westfechtel. 2021. A
Framework for Projectional Multi-variant Model Editors. In International Con-
ference on Model-Driven Engineering and Software Development. SCITEPRESS,
294–305.

[52] Felix Schwägerl and Bernhard Westfechtel. 2016. SuperMod: Tool Support for
Collaborative Filtered Model-Driven Software Product Line Engineering. In In-
ternational Conference on Automated Software Engineering. ACM, 822–827.

[53] Felix Schwägerl and Bernhard Westfechtel. 2019. Integrated Revision and Varia-
tion Control for Evolving Model-Driven Software Product Lines. Software and
Systems Modeling 18, 6 (2019), 3373–3420.

[54] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. DeltaEcore - A Model-
Based Delta Language Generation Framework. In Modellierung. GI, 81–96.

[55] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Integrated Management
of Variability in Space and Time in Software Families. In International Software
Product Line Conference. ACM, 22–31.

[56] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Benchmark-
ing the Techniques for the Evolution of Variant-Rich Systems. In International
Systems and Software Product Line Conference. ACM, 177–188.

[57] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski.
2016. Concepts, Operations, and Feasibility of a Projection-Based Variation Con-
trol System. In International Conference on Software Maintenance and Evolution.
IEEE, 323–333.

[58] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Towards Efficient Analysis of Variation in Time and Space. In International
Workshop on Variability Modelling of Software-Intensive Systems. ACM.

[59] EricWalkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational
Software. In International Conference on Generative Programming: Concepts and
Experiences. ACM, 29–38.

[60] Bernhard Westfechtel, Bjørn P. Munch, and Reidar Conradi. 2001. A Layered
Architecture for Uniform Version Management. IEEE Transactions on Software
Engineering 27, 12 (2001), 1111–1133.

	Abstract
	1 Introduction
	2 Background
	3 Scope and Unification Process
	4 Identified and Unified Operations
	4.1 Predicates
	4.2 Direct Editing Operations
	4.3 View-Based Operations

	5 Illustrating Example
	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

