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Abstract—Mutation testing is a technique to evaluate the
quality of test cases by assessing their ability to detect faults.
Mutants are modified versions of the original program that are
generated automatically and should contain faults similar to
those caused by developers’ mistakes. For configurable systems,
existing approaches propose mutation operators to produce faults
that may only exist in some configurations. However, due to
the number of possible configurations, generating and testing all
mutants for each program is not feasible. To tackle this problem,
we discuss to use static analysis and adopt the idea of T-wise
testing to limit the number of mutants. In particular, we i) discuss
dependencies that exist in configurable systems, ii) how we can
use them to identify code to mutate, and iii) assess the expected
outcome. Our preliminary results show that variability analysis
can help to reduce the number of mutants and, thus, costs for
testing.

I. INTRODUCTION

Mutation testing is a promising technique to evaluate the
effectiveness of test cases [16, 17]. A mutant is generated
automatically as a modified, possibly faulty, version of the
original program by applying mutation operators to the
source code. Specific mutation operators are proposed for
different programming techniques and languages to exploit
their properties [28]. The faults in the resulting mutants can be
seen as simulating typical faults of software developers. Test
cases are executed on these mutants to assess whether they are
able identify the injected faults.

Traditionally, mutation testing has been considered as an
approach that, while potentially providing a large benefit, is
rather expensive [16, 21]. The costs result from executing
a large number of mutants against test cases. Several cost
reduction techniques have been proposed to tackle this problem,
mainly utilizing two ideas. Firstly, as it is not feasible to
generate mutants for all possible faults, different approaches
try to minimize the number of mutants without significantly
loosing effectiveness [7, 29, 39]. Secondly, some techniques
aim to optimize the execution process itself [40].

In our research, we focus on highly-configurable systems
in which software variability is one of the major challenges.
Configurable systems enable companies (or even customers)
to configure software systems based on a set of features,
which are defined as an increment in functionality recognized
by customers [4, 6]. The goal of this line of research is
to investigate the application of mutation testing to highly-
configurable systems. This is more expensive than for a single
program due to the huge number of possible products caused

by variability. In other words, in the context of configurable
system, for each mutant, test cases need to be executed against
several products, because the introduced faults may not appear
in all configurations.

In previous work, we proposed an initial set of mutation
operators suitable to produce mutants that mimic faults caused
by variability, and as such representative for highly-configurable
systems [3]. The operators are specifically designed for systems
implemented with preprocessor techniques, which are widely
used in practice [4, 27]. This proposed set of operators is the
first to produce mutants that cannot only mimic faults in feature
models but also in domain artifacts, which represent feature
implementations, and in the mapping between model and code.
We found that the proposed operators cause real variability
faults and that approximately 50% of the analyzed faults are
in domain artifacts.

In this paper, we build on this previous work and discuss
potential techniques to reduce costs by influencing the way
mutants are generated and tested. For this, we propose to
utilize static variability analysis [24, 25] to identify at which
point in the source code a mutation operator should be applied.
Furthermore, we discuss to adopt the idea of T-wise testing [32,
34] to reduce the number of products we have to test. More
precisely, we contribute the following:

• We discuss the characteristics of mutation operators
proposed in previous work in more detail. In particular, we
introduce a distinction between different types of mutation
operators for domain artifacts of configurable systems.
This can help to categorize and identify operators that are
suitable for different test scenarios.

• We propose to utilize variability analysis and T-wise
testing techniques to reduce the number of mutants. Hence,
we provide a starting point for suitable cost reduction
techniques and, thus, enable efficient mutation testing in
configurable systems.

• We exemplify our approach on a running example and
present a preliminary evaluation to demonstrate the
potential applicability of the approach.

The remaining paper is structured as follows. In Section II,
we provide background on mutation testing and configurable
systems, focusing on preprocessors. Afterwards, we introduce
our approach in Section III and present a preliminary evaluation
in Section IV. We then describe related work in Section V and
conclude in Section VI.



Fig. 1. Taxonomy of variability-based faults [3].

II. BACKGROUND

In this section, we introduce foundations about mutation
testing and variability in preprocessor-based systems.

A. Mutation Testing
With mutation testing, locations in the source code are

selected at which syntactic changes are made to create a set
of faulty programs called mutants [21]. The potential faults in
mutants represent mistakes programmers often make. These
mutants are then used to evaluate the ability of test cases to
detect faults in the source code.

The main challenge in mutation testing are the corresponding
costs of executing a large number of mutants against the
test cases. Hence, several techniques have been proposed to
reduce these costs. Offutt and Untch [31] cluster cost reduction
techniques into three groups:
• Do fewer, where the number of mutants is reduced.
• Do faster, where the execution time of mutation testing

is minimized.
• Do smarter, where the generation of mutants and their

execution against test cases is optimized.
As we aim to reduce testing costs by influencing the way these
mutants are generated and tested, we can cluster our approach
in the do fewer and do smarter groups.

While mutation testing is an effective approach in assessing
the quality of test cases, generating mutants to represent all
potential faults for a program is unfeasible. Hence, it is common
in mutation testing to target only specific types of faults [21].
In this article, we target variability faults, i.e., faults that
appear only in some products in a configurable system. These
variability faults are clustered into three groups [1, 3, 5, 15],
which we illustrate in Figure 1. Firstly, model-based faults,
which can occur in feature definitions or dependencies between
them. Secondly, domain artifact faults, which can occur in
domain artifact, for instance in the implementation. Finally,
mapping-based faults, which can occur in mappings between
model and domain artifacts. This taxonomy is based on the
assumption that faults in generated products can be traced back
to the aforementioned layers. We focus on faults in domain
artifacts as they usually represent most faults [1, 3].

B. Variability in Preprocessor-Based Systems
In configurable systems, users can customize products to

meet their requirements by selecting and deselecting configura-
tion options [9] and, hence, deriving different products. Several

techniques have been proposed to implement configurable
systems [4]. In particular, preprocessor-based mechanisms,
mainly the C preprocessor (Cpp) tool, are widely used in
practice [22].

In preprocessor-based variability mechanisms, directives
(a.k.a. macros) control syntactical program transformations.
Those directives are clustered into four types: file inclusion,
macro definition, macro substitution, and conditional inclu-
sion [27]. For preprocessor-based systems, macro definitions
(#define) and conditional inclusions (#ifdef) are the most
important directives.

To illustrate how to implement variability with Cpp, we show
a running example in Figure 2, where we illustrate a condensed
code snippet from Lynx1. This example originally contains
100 lines of code and seven nested preprocessor conditionals in
the file LYLocal.c. The macro #define is used to select fea-
tures (e.g., HAVE_TYPE_UNONWAIT on Line 2). Logical oper-
ators (e.g., ||) are used in the Cpp to combine multiple features
to complex expressions (e.g., #if defined(__DJGPP__)
|| defined(_WINDOWS) on Line 11).

A condition that controls the inclusion or exclusion of feature
code is called a feature expression. Based on the output of a
feature expression, i.e., true or false, the following source code
up to the next, #ifdef, #endif, or #else is compiled or
not. The presence or absence of feature code can be controlled
with source code annotations #ifdef and #ifndef, for
instance on Line 21 and Line 47, respectively. Each source
code fragment that is encapsulated by #ifdef can be an
optional feature, including other #ifdef macros, which are
defined as nested #ifdefs. The specification of alternative
features depends mainly on else cases.

III. MUTATION ANALYSIS

Applying mutation operators in the context of annotated
variability is a challenging task. Using our running example
in Figure 2, we illustrate how mutation operators can be
applied. Basically, our approach is to describe the characteristics
of a mutation operator to define the type of fault it injects.
By utilizing variability analysis, we aim to identify at which
points in the source code an operator can be used to introduce
variability faults. To further reduce costs, we propose to adopt
T-wise testing and assess only a subset of variants that cover
all feature interactions of a specific degree.

In previous work, we defined three types of mutation
operators for domain artifacts [3]:

• Conditionally Applying Conventional Opera-
tor (CACO): CACO applies a conventional mutation
operator in the context of variability. For example, it may
replace a logical operator in a variable code block or
change a configuration option.

• Removing Complete Ifdef Blocks (RCIB): A RCIB
operator removes an #ifdef block and, thus, changes
the program behaviour for some products.

1http://lynx.invisible-island.net/, 15.11.2016

http://lynx.invisible-island.net/


1 #include < HTUt i l s . h>
2 #define HAVE_TYPE_UNIONWAIT
3 // ...
4 static int LYExecv (char ∗pa th , char ∗∗argv , char ∗msg ) {
5 int r c = 0 ;
6 #if d e f i n e d (VMS)
7 CTRACE ( ( t f p , " [...] " , p a t h ) ) ;
8 #else
9 int n ;

10 char ∗ tmpbuf = 0 ;
11 #if d e f i n e d ( __DJGPP__ ) | | d e f i n e d (_WINDOWS)
12 (void ) msg ;
13 s t o p _ c u r s e s ( ) ;
14 H T S p r i n t f 0 (&tmpbuf , "%s" , p a t h ) ;
15 for ( n = 1 ; a rgv [ n ] != 0 ; n ++)
16 H T S p r i n t f (&tmpbuf , " %s" , a rgv [ n ] ) ;
17 H T S p r i n t f (&tmpbuf , "\n" ) ;
18 r c = LYSystem ( tmpbuf ) ? 0 : 1 ;
19 #else
20 int p i d ;
21 #ifdef HAVE_TYPE_UNIONWAIT
22 union w a i t w s t a t u s ;
23 #else
24 int w s t a t u s ;
25 #endif /* HAVE_TYPE_UNIONWAIT */
26 if (TRACE) {
27 CTRACE ( ( t f p , " [...] " , p a t h ) ) ;
28 for ( n = 0 ; a rgv [ n ] != 0 ; n ++)
29 CTRACE ( ( t f p , " [...] " , n , a rgv [ n ] ) ) ;
30 }
31 r c = 1 ;
32 s t o p _ c u r s e s ( ) ;
33 p i d = f o r k ( ) ;
34 switch ( p i d ) {
35 case −1:
36 H T S p r i n t f 0 (&tmpbuf , g e t t e x t (" [...] " ) , msg ) ;
37 r c = 0 ;
38 break ;
39 case 0 :
40 #ifdef USE_EXECVP
41 execvp ( pa th , a rgv ) ;
42 #else
43 execv ( pa th , a rgv ) ;
44 #endif /* USE_EXECVP */
45 e x i t ( EXIT_FAILURE ) ;
46 default :
47 #ifndef HAVE_WAITPID
48 while ( w a i t (& w s t a t u s ) != p i d ) ;
49 #else
50 while (−1 == w a i t p i d ( pid , &w s t a t u s , 0 ) ) {
51 #ifdef EINTR
52 if ( e r r n o == EINTR )
53 continue ;
54 #endif /* EINTR */
55 #ifdef ERESTARTSYS
56 if ( e r r n o == ERESTARTSYS)
57 continue ;
58 #endif /* ERESTARTSYS */
59 break ;
60 }
61 #endif /* !HAVE_WAITPID */
62 if ( [ . . . ] ) {
63 H T S p r i n t f 0 (&tmpbuf , g e t t e x t (" [...] " ) , msg ) ;
64 r c = 0 ;
65 } }
66 #endif /* __DJGPP__ || _WINDOWS */
67 if ( r c == 0)
68 LYSleepAle r t ( ) ;
69 s t a r t _ c u r s e s ( ) ;
70 if ( tmpbuf != 0) {
71 if ( r c == 0)
72 HTAler t ( tmpbuf ) ;
73 FREE( tmpbuf ) ;
74 }
75 #endif /* VMS */
76 CTRACE ( ( t f p , "LYexecv ->%d\n" , r c ) ) ;
77 return ( r c ) ;
78 }

Fig. 2. Nested variability in Lynx.

• Moving Code around Ifdef Blocks (MCIB): The MCIB
operator moves code around an #ifdef block.

In this section, we further analyze these operators. Therefore,
we first define two characteristics to describe such operators. Af-
terwards, we discuss corresponding cost reduction techniques.

A. Characteristics of Domain Artifact Operators

Based on the types of mutation operators, we span two
dimensions to describe and classify them in the context of
variability. These dimensions are the type of change (i.e., how
to usefully apply it) and affected variability (i.e., which fault is
injected). Hence, thee two dimensions help to argue at which
point a mutation operator can be usefully applied.

1) Type of Change: We can differ mutation operators by
the change they apply: either syntactically by mutating the
content of a statement, or structurally by mutating the order of
statements. Syntactical changes are the basis for most existing
operators and include, for instance, string or regular expression
replacements. Such operators simulate mistakes and typos done
by developers and can be applied without further knowledge
of a program’s structure. For the three defined operators this
behavior corresponds mostly with CACOs. For instance, in our
example in Figure 2, a syntactical change can be made in the
boolean condition on Line 11, where the logical operator &&
could be changed to || to manipulate the condition’s output.

Structural operators require information on the source code
and its variability. They do not mimic faulty written but faulty
placed statements, for instance, a mandatory variable definition
in an optional #ifdef block. Hence, it can be important to
know at which position in the source code variability is placed.
In the context of our operators, this includes RCIB, MCIB,
and a set of CACO. A structural change in Figure 2 is to move
Line 45 in front of Line 40, which may change the systems’
behavior when the feature Use_Execvp is selected.

2) Affected Variability: Any applied mutation operator can
affect either a code segment of a single feature (Single Feature
Fault) or a variability point, where several features interact
(Feature Interaction Fault). Mutating a single feature that does
not interact with others limits the resulting mutants and does
only assess this one. To do this, we have to ensure that no
external dependencies, for instance a parameter that is changed
by other features, exist and have to consider nested variability.
However, assessing mutants on a single feature without its
dependencies is not different from mutation testing in single
systems.

In contrast, we focus on mutating feature interactions to
assess the quality of test cases to handle the optional feature
problem [23]. Testing several features at once is difficult due to
feature dependencies, which makes it problematic to evaluate
the results. For instance, if we mutate the variable definition
of errno (Figure 2 Lines 52 and 56), it affects at least
the conditionals Eintr and Erestartsys. Rodrigues et
al. [38] refer to these dependencies as maintenance and impact
points. At any maintenance or impact point, we can change a
dependable variable by applying a mutation operator. Following



impact points use this variable and, hence, are affected by the
change.

With those two dimensions, we can describe the way a
mutation operator affects domain artifacts. As we aim to
introduce feature interaction faults to assess dependencies in the
variable code, we also need to ensure that we apply operators
accordingly.

B. Cost Reduction Techniques

Several cost reduction techniques have been proposed for
mutation testing [7, 21, 29, 40]. Reducing costs is essential
for configurable systems as we can create 2n products from
n optional configuration options. Hence, testing all possible
products seems unrealistic [14], even without mutating them.

Budd [7] calculates the number of mutants to be in the order
of the square of referenced variables. However, this depends
on the mutation operators that are used and the changes these
apply to the source code. For instance, Polo et al. [35] illustrate
that the statement return a+b can be mutated at least in 20
different ways. Thus, it seems unfeasible to assess all possible
mutants in every product and against all test cases.

To tackle this problem, we propose to combine dependency
analysis and adopt the idea of T-wise testing. With the first, we
aim to identify mutation points that, due to feature interactions,
have a high probability of introducing variability faults. With
the later approach we aim to then limit the subset of products to
test in order that all T-wise feature interactions are considered
at least once. We remark, that deselected features can also
cause faults while testing, for instance because they define a
variable that is used somewhere else [1].

1) Dependency Analysis: The first step to reduce the number
of variability-based mutants is to analyze a systems’ variable
code and focus on mutating feature dependencies. For instance,
testing a feature that does only print a log into a console
does not consider any interactions. As a result of dependency
analysis, we reduce the number of mutants in the source code
as well as the number of products [32, 34]. Rodrigues et al. [38]
define three types of feature dependencies in their work:

• Intraprocedural dependencies refer to situations in which
the same code element, for instance a variable, is shared
among features within one function. In Figure 2, for ex-
ample, the variable errno is shared by Eintr (Line 52)
and Erestartsys (Line 56), which are both part of the
same function. Mutating one reference of the variable
impacts all following references, which is why some
configurations may behave incorrectly. Compared to other
dependencies, such situations are easy to spot due to their
locality.

• Interprocedural dependencies describe features that share
a code element among different functions, for instance
by passing a variable. We illustrate such a situation on
Lines 41 and 43 of Figure 2, in which different functions
are called, depending on the selected feature. Mutating
the corresponding variables path and argv affects the
behavior of different feature interactions.

• Global dependencies are similar to intraprocedural ones,
but the shared element is defined globally and, thus, might
be overlooked easier. In Figure 2, such a dependency exist
on Line 26. There, the variable TRACE is referenced but
not defined previously. We found that TRACE is defined
with the Cpp in the file HTUtils.h. The variable is changed
and referenced at several occasions, not only in this
example, and interacts with different features.

In the context of this work, we focus on testing feature
interactions and, thus, we need to identify such dependencies
and mutate them. Still, we cannot guarantee that an operator
will actually introduce a variability fault, but at least we
increase the probability of generating one. For most CACO
operators, we need to know which code affects which features.
Based on this information, we are able to mutate only those
statements that influence or are influenced by variability. To
usefully apply RCIB, it is necessary to identify variable code
blocks that have an impact on others. Removing an #ifdef
block that does not interact will not help to test dependencies.
Finally, for MCIB operators we need to know which lines of
code are suitable to move around. Therefore, we must know
which statements before or after an #ifdef block actually
affect this block. Thus, we can reduce the number of useless
mutants, for instance because they switch independent lines or
move the same dependent code as part of larger blocks, and
focus on significant ones. We aim to identify and assess such
dependencies with static analysis, for instance by using the
TypeChef tool [24, 25].

2) T-Wise Testing: To test mutants in configurable systems,
we need to generate products based on the mutated domain
artifacts. Creating all possible products is unfeasible in config-
urable systems, especially for those that have a large number
of features. Hence, several approaches have been proposed to
reduce the number of products to be tested, for instance T-wise
testing [32, 34]. As a results, instead of testing all possible
products, the goal is to identify a relevant subset that covers
combinations of T features. We aim to utilize this idea and
combine it with the dependency analysis to reduce the number
of mutants. Basically, we propose to asses each mutant only
once for each possible feature combination.

For this, the number of mutants can be reduced using T-wise
testing as follows: If we apply pairwise testing, where T = 2,
to generate products, we guarantee to cover all combinations
of two features. Without combining feature dependencies and
T-wise testing, there is a high probability that test cases will
not kill the mutant. This is not due to the quality of test cases
but because higher-order feature combinations may not appear
in the generated products, as pairwise testing only guarantees
to cover all combinations of feature pairs.

In addition, existing T-wise algorithms assume that all
features interact with each other, which may not be the case in
practice [36]. For our scenario, we aim to limit the number of
feature interactions that are covered in the generated products
by excluding features that do not interact. As input for this
selection we can use the variability analysis during which we
identify the dependencies.



Overall, we aim to utilize the characteristics of variability
mutation operators by applying dependency analysis and T-
wise testing. Thus, we can reduce the number of mutants and
optimize their generation to suit configurable systems.

IV. PRELIMINARY EVALUATION

In this section, we present a preliminary evaluation to
demonstrate the general feasibility our approach. We derive
first insights of its applicability by considering our running
example, which we show in Figure 2, and assessing the number
of potential mutants for different strategies. We compare and
discuss these results to argue that our approach is reasonable
and provides a starting point for mutation testing in configurable
systems.

For simplicity, we assume that we test the function LYExecv
in Figure 2 as an independent unit. We only consider a
single CACO operator: Statement Deletion (SSDL) [2] for
our calculation. This operator is designed to show that each
statement in the source code has an effect on the output. For
this, it removes one statement, which can be a single line of
code or a complete conditional block, at a time, ensuring that
the program is still syntactically correct. Hence, preprocessor
directives, variable definitions, or control flow statements are
not removed.

At the beginning, we assess the costs of naive mutation
testing considering neither cost reduction techniques nor
feature interactions. In our example, we can remove 38
statements or conditional blocks to create mutants. Furthermore,
8 configuration options (e.g., VMS, __DJGPP__, _WINDOWS,
HAVE_TYPE_UNIONWAIT, USE_EXECVP, HAVE_WAITPD,
EINTR, ERESTARTSYS) are represented in the source code,
wherefore 256 (i.e., 2n) products can be configured. As a result,
we would have 256∗38 = 9728 mutated products that we need
to test. In the following, we illustrate how our approach can
reduce this number.

First, we focus on feature dependencies and analyze which
statements interact. A good example is the variable rc that is
defined on Line 5. Several references to this variable are scat-
tered among different features (e.g., on Lines 18, 31, 37, 64, 67,
and 71). Thus, if we apply SSDL on any of these references, it
may affect another feature’s behavior. For instance, removing
the statement rc = 0 on Line 37 may change the outcome
of conditions on Lines 64 and 67. In contrast, as there are
no features afterwards, removing these two statements does
not affect any interactions. Considering references that are
later used in another feature and, thus, may affect it, we
can find 6 statements and conditionals to mutate (e.g., on
Lines 18, 31, 33, 34, 35, and 37). Those are also presented
in Table I as points of maintenance. Mutating these statements
will affect the corresponding variable and points of impact
(cf. Table I). We remark, that some of the dependencies only
appear when specific features are not selected [1].

While we now reduced the number of mutations in the
domain source code, we secondly aim to test as few con-
figurations as necessary. Therefore, we rely on our previous
variability analysis and the idea of T-wise testing. 256 different

TABLE I
PAIRWISE FEATURE DEPENDENCIES IN FIGURE 2.

Feature interactions Variable Point of
Maintenance Impact

¬V MS ∧ __DJGPP__ rc 18 67, 71
¬V MS ∧ _WINDOWS rc 18 67, 71
¬V MS ∧ ¬__DJGPP__ rc 31, 35, 37 64
¬V MS ∧ ¬_WINDOWS rc 31, 35, 37 64
¬__DJGPP__ ∧ HAV E_WAIT PID pid 33, 34 50
¬_WINDOWS ∧ HAV E_WAIT PID pid 33, 34 50
¬__DJGPP__ ∧ ¬HAV E_WAIT PID pid 33, 34 48
¬_WINDOWS ∧ ¬HAV E_WAIT PID pid 33, 34 48

configurations can be derived from the 8 options but some
of these are syntactically identical. This is a result of feature
interactions and encapsulated variability. For instance, on Line 6
it is checked whether VMS is defined. All other features only
affect the code in the else clause and, thus, all configurations
in which VMS is defined result in the same product.

Furthermore, we aim to utilize the idea of T-wise testing
and cover all pairwise feature interactions. Applying T-wise
testing for T > 2 requires additional configurations to assess
all configurations. However, as we discussed in Section III,
interactions between 3 or more features appear seldom in
the created products [36]. Hence, corresponding mutants will
rarely be killed despite the test cases having high quality.
Based on the previous variability analysis, we identify those
pairwise interactions that are potentially affected by mutations.
For our example, this means we have to consider the feature
dependencies displayed in Table I. Thus, we can cover these
pairwise dependencies with 6 different configurations instead
of using all 256.

Overall, we see in Table I that we can mutate each of the
6 configurations at 6 different maintenance points. Hence, we
need only 6∗6 = 36 mutants to assess all feature interactions
in our example. Compared to testing without previous analyses,
we only consider approximately 0.37% of the previous 9728
mutants. However, we argue that those are the ones that allow
an assessment of test cases for feature interactions. While
these are preliminary results, they illustrate the potential of
our approach. We have to remark, that we do not guarantee
that we can detect all feature interactions with static analysis.
Still, due to the idea of T-wise testing, we cover all pairwise
feature interactions that are in the source code.

V. RELATED WORK

In this section, we discuss existing work that is related to
ours. There exist numerous approaches to utilize and optimize
product lines testing [8]. However, in this section we focus on
mutation testing for configurable systems and corresponding
cost reduction techniques.

A. Mutation Testing in Configurable Systems

Arcaini et al. [5] propose to mutate feature models in
order to find faults. They propose mutation operators that can
mimic mistakes developers make during the design of feature
models. Henard et al. [18] present a search-based approach to
generate a set of products to detect faulty mutants in feature
models. For this purpose, they create an altered version of



feature models, which contain a fault within their propositional
formula. However, the aforementioned approaches focus only
on mutating feature models. In this paper, we discuss utilizing
static analysis and T-wise testing to efficiently mutate the
source code.

Lackner et al. [26] assess the quality of test cases for
configurable systems by measuring their capability to detect
faults. For this purpose, they comprise model-based mutation
operators. Reuling et al. [37] propose to generate an effective set
of configurations for fault-based configurable systems. Within
their approach, they consider atomic and complex mutation
operators. In this paper, we present a discussion on how the
number of mutants can be reduced. These generated mutants
can be introduced using not only model-based operators, but
also domain artifact operators.

B. Cost Reduction Techniques

Several approaches have been proposed to reduce the costs
of mutation testing by limiting either the number of generated
mutants or the execution costs [21].

Early approaches to reduce the number of mutants aimed to
sample subsets of these. For instance, Budd [7] and Zhang et
al. [43] show that that small samples (10% and 5% respectively)
are sufficient to achieve high accuracy with the full mutation
score. Other authors further investigated this approach [30,
42]. Overall, different sampling strategies were proposed, for
instance, by random [29], using clustering [11, 20], or using
Bayesian sequential probability [39]. In contrast to these works,
we do not sample the mutants based on a selection strategy
but limit them to a specific problem (e.g., feature interactions)
by applying variability analysis.

Other approaches aim to limit the used operators instead of
sampling the mutants themselves [41]. For example, Deng et
al. [10] found that the statement deletion operator, which we
use for our evaluation, has a high accuracy while reducing the
number of mutants significantly. Another way to reduce the cost
is to optimize the execution process. Howden [19] proposes to
execute only affected components in a mutant instead of the
entire program. For our approach, we consider operators only
if they address variability. Furthermore, we propose to utilize
static analyses and T-wise testing to influence the generation
and testing of mutants and, thus, reduce costs. Hence, our work
is complementary to such approaches.

Devroey et al. [12, 13] focus on modeling mutants as variants
of a product line based on feature transition systems. With heir
approach, they limit test cases to those that reach a mutant,
share common transition, and merge executions of the same
states. This work is closely related to ours in its focus to reduce
testing costs and can complement our approach. However,
in contrast to mutating transition systems, we focus on the
implementation level directly.

VI. CONCLUSION AND FUTURE WORK

Mutation testing is a mature technique in single-system
development used mainly to evaluate the quality of test cases.
The main challenge in mutation testing is the computational

costs due to the large number of mutants. Hence, several
approaches have been proposed to reduce these costs by
considering less mutants or optimizing the execution process.

In this paper, we discuss possibilities of reducing compu-
tational costs for mutation testing in configurable systems.
Therefore, we propose to utilize static analysis and T-wise
testing. Using these techniques will reduce the mutation testing
costs, because:
• the number of considered products is reduced,
• fewer mutants are generated, and
• these mutants focus on variability faults.

Hence, our approach supports efficient mutation testing for
configurable systems.

In future work, we plan to investigate three points. Firstly,
due to the lack of an open-source program with test cases and
an oracle to be used in such evaluations, we plan to generate
these for a set of projects. Those can later be used to evaluate
results and compare them. Secondly, we will implement a tool
to generate mutants by focusing on domain mutation operators
proposed in previous work [3]. Thirdly, in the aforementioned
tool, we plan to integrate static analysis techniques, such as
TypeChef [24, 25], in order to minimize computational costs
to test feature interactions. Finally, we investigate how to
omit equivalent or duplicated configurations and mutants in
variability based on existing works, for instance by Papadakis
et al. [33].
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