Efficient Product-Line Testing using Cluster-Based
Product Prioritization

Mustafa Al-Hajjaji*, Jacob Kriiger*", Sandro Schulze*, Thomas Leich, and Gunter Saake*
*University of Magdeburg, Germany
Email: mustafa.alhajjaji, jacob.krueger, sandro.schulze, gunter.saake@ovgu.de
THarz University of Applied Sciences, Germany
Email: tleich@hs-harz.de

Abstract—A software product-line comprises a set of products
that share a common set of features. These features can be
reused to customize a product to satisfy specific needs of certain
customers or markets. As the number of possible products
increases exponentially for new features, testing all products
is infeasible. Existing testing approaches reduce their effort by
restricting the number of products (sampling) and improve their
effectiveness by considering the order of tests (prioritization). In
this paper, we propose a cluster-based prioritization technique

to sample similar products with respect to the feature selection.

We evaluate our approach using feature models of different
sizes and show that cluster-based prioritization can enhance the
effectiveness of product-line testing.

I. INTRODUCTION

Software product-line engineering (SPLE) is an approach to
develop a set of systems by considering their commonalities
and differences in terms of features [5, 8, 23]. Thus, SPLE aims
to facilitate systematic reuse, increase quality, decrease time to

market, and reduce development and maintenance costs [5, 8].

Despite the aforementioned advantages, SPLE also poses new
challenges with respect to software quality assurance.

Due to the exponential number of potential products that
can be derived from a set of features, it is difficult to guarantee
correctness of all features and their combinations. To reduce
costs, several approaches have been proposed to test only
a sample of these products, for instance with combinatorial
interaction testing (CIT) [21, 22]. CIT systematically limits
the number of products by covering a certain degree of
feature interactions, for instance pairwise. While CIT limits the
products to test, the sampled set can still contain many products
for large product lines. For example, Johansen et al. [16] report
that applying pairwise testing for the Linux kernel (6,888
features) requires 480 products with each comprising hundreds
of test cases to be executed, thus, requiring huge efforts. As
testing time is limited, testers aim at finding faults as fast as
possible. Hence, approaches have been proposed to enhance
the effectiveness of product-line testing by prioritizing the
generated products [4, 15] or its test cases [19].

In this paper, we exploit the commonality of products
in a product line. Our idea is to cluster products based on
their feature selections to identify those that are syntactically
similar. On these clusters, developers can apply different testing
strategies: Firstly, they may select a subset of products from
each cluster. Hence, the sample covers dissimilar products

and thus, most likely different feature interactions. Secondly,
the developers may want to cover a specific cluster in more
detail, for instance, because it contains commonly demanded
products. Hence, test efforts can be reduced by enabling faster
fault detection. Finally, clustering products can be useful to
optimize the setup time for testing, such as in the automotive
domain. For instance, instead of consuming time to change the
testing infrastructure (e.g. changing a specific hardware) for
each product, products can be clustered based on a specific
parameter and the same testing setup can be used for the
whole products in a cluster. We evaluate our approach using
feature models of different sizes, including the Linux kernel
with 6,888 features. We compare cluster-based prioritization
to random orders and a heuristic technique (similarity-based
prioritization [4]). The results for cluster-based prioritization
show potential improvement in the effectiveness of product-line
testing (i.e., increasing the early rate of fault detection).
More precisely, we contribute the following:

« We propose a cluster-based prioritization approach to
cluster products. This allows us to sample products and
prioritize them.

« We evaluate our approach compared to a heuristic tech-
nique (similarity-based prioritization [4]) and random
orders.

« We assess the impact of having different cluster numbers.

The remaining paper is structured as follows: In Section II we
introduce background for this article. We describe our approach
in Section III and provide an extensive evaluation in Section IV.
Then, we briefly describe related work within Section V and
conclude in Section VI.

II. BACKGROUND

In this section, we provide an overview of feature models
and combinatorial interaction testing.

A. Feature Model

A feature model (FM) is a hierarchical structure used to
define the variability of product lines in terms of features (i.e.,
a user-visible increment of functionality). Moreover, feature
diagrams are used for graphically representing features and
the relations among them [17]. We display the diagram for
a mobile-phone product line in Figure 1 to further explain
feature dependencies.

Legend:
MobilePhone ® Mandatory
d Optional
A o
- A Alternative
Calls | GPS | | Screen Media Abstract
A /‘\g Concrete
Basic | | Colour = High_resolution | | Camera MP3

Camera = High_resolution
- (GPS A Basic)

Fig. 1. Feature diagram of a mobile-phone product line.

Features themselves can either be mandatory or optional.
A mandatory feature is required to appear in all generated
products, such as feature Calls in Figure 1. In contrast, an
optional feature is not required to be part of all products and
enables customization.

Furthermore, features can be grouped into alternative and
or dependencies. In an alternative group, only one feature
can be selected in a particular configuration (e.g., only one of
the features Basic, Colour, or High_resolution in Figure 1).
Within or groups, at least one feature can be selected for a
configuration. Additional dependencies, known as cross-tree
constraints, describe relations between features (e.g., requires
or excludes relationships). The combination of features is
defined as a valid configuration if it satisfies the feature model
dependencies. Each configuration can be used to generate a
product implementing the selected features. In this paper, the
terms configuration and product are used interchangeably.

B. Combinatorial Interaction Testing for Product Lines

Combinatorial interaction testing has shown its value in
sampling test cases that cover parameter value combinations
systematically [21, 22]. In the context of product-line testing,
this approach is used to reveal faults that are caused by
the interactions between features [22]. Using combinatorial
interaction testing avoids exhaustive testing, which results from
the combinatorial explosion problem [16]. In particular, the

generated products cover all # —wise combinations of ¢ features.

For instance, in Table I, we list the valid configurations of
the mobile-phone product line for t =2 using the sampling
algorithm ICPL [16]. Each combination of 2 features (pairwise)
appears in at least one product. Khun et al. [18] report that
applying pairwise testing can detect approximately 80% of
faults. Although combinatorial interaction testing reduces the
number of considered products significantly, this number can
still be large [16].

Thus, several approaches have been proposed to prioritize

products in order to find faults as fast as possible [4, 9, 26].

One of these approaches is similarity testing, which aims
at increasing the interaction coverage [4, 15]. The results
show that testing dissimilar products performs well at finding
faults [4, 10, 15]. In this paper, we cluster similar products
into groups, allowing to sample them based on their similarity
or dissimilarity.

TABLE I
CONFIGURATIONS OF THE MOBILE-PHONE PRODUCT LINE IN FIGURE 1
CREATED WITH PAIRWISE SAMPLING.

ID configurations

c {Calls, Screen, Colour}

¢y {Calls, GPS, Screen, High_resolution, Media, MP3}

¢3 {Calls, Screen, High_resolution, Media, Camera}

¢y {Calls, Screen, Basic}

cs {Calls, Screen, High_resolution, Media, Camera, MP3}
ce {Calls, GPS, Screen, Colour, Media, MP3}

c7 {Calls, GPS, Screen, High_resolution, Media, Camera}
cg {Calls, Screen, Basic, Media, MP3}

cg {Calls, GPS, Screen, High_resolution}

III. CLUSTER-BASED PRIORITIZATION

The main goal of our approach is to cluster products into
subsets such that products in each set share common properties.
As we illustrate in Figure 2, the input for our approach is a
set of configurations. These configurations might be:

« All valid configurations of a product line.

« A set of configurations created with sampling algorithms.

¢ A set of configurations provided by domain experts.
In the following, we describe the two main steps, clustering and
prioritization, of our approach, which we display in Figure 2.
Clustering enables testers to cluster products into groups (e.g.,
cluster with the most demanded products). In addition, testers
may wish to prioritize products within clusters based on certain
criteria, such as the coverage, to find faults faster. For the latter,
we use an existing approach to prioritize products, namely
similarity-based prioritization [4].

A. Clustering

The commonality of configurations is measured with a
clustering criterion. In this paper, we consider the similarity
between products in terms of the selected features (their
configuration, cf. Table I) as a criterion. The resulting clusters
allow testers to select a sample of products from each or only a
particular cluster. We consider the simple K-means algorithm to
cluster products. While we argue that our clustering approach
is independent from the used clustering algorithms, we plan
to investigate whether using different cluster algorithms may
influence the results.

B. Prioritization

In order to prioritize clustered products, we recognize two
layers of prioritization:
1) Intra-cluster prioritization addresses the order of products
in a cluster.
2) Inter-cluster prioritization addresses the order of clusters
themselves.

In this paper, we only consider intra-cluster prioritization to
prioritize products. Considering inter-cluster prioritization (i.e.,
from which clusters products are tested first) requires additional
domain knowledge, for instance, which cluster contains more
demanded products than others. Hence, during our evaluation
we rely on the cluster ordering that is given by the clustering
algorithms.

Feature model

Sampling algorithm

—Sample—> Sampling
Generate all valid
—Generate> .
configurations

Configurations
given by domain

4

Set of
configurations

Intra-cluster

Clusterin, C o
& prioritization

Set of clusters
with prioritized
products

Set of clusters

experts

Cluster-based product prioritization

Fig. 2. An overview of cluster-based product prioritization.

To prioritize products in a cluster, we use similarity-based
prioritization [4], that is, products are prioritized based on
the similarity of their configurations. The product that is least
similar to all previously tested ones is selected to be tested
next. The goal of considering the similarity-based prioritization
approach [4] is to increase the interaction coverage for products
under test inside a particular cluster as soon as possible.
Therefore, we first select the product with the maximum
number of selected features. Considering our running example
(cf. Table I), we have 3 configurations (c3, c5, ¢7) with the
maximum number of selected features (6 features). If multiple
products have the same number of selected features, we pick
one randomly. To explain the following steps, let us assume
we have picked c; as the first product to be tested. Second,
we select the product that is least similar to ¢;. The similarity
between two products is measured using Hamming distance.
Thus, the distance between two products ¢; and c; relative to
the set of all features F is defined as follows:
lciNejl +[(F\ei) N (F\ej)|

|F|

|ciNcj| is the number of selected features in the configurations
ci and c;. [(F\¢;) N (F\cj)| is the number of deselected
features in both configurations. The distance of two products
ranges between 0 and 1, with similar products being close to
0. In contrast, values close to 1 indicate that the products are
different.

Based on the values in Table I, we provide the following
example to illustrate how the distances between configurations
c1 and ¢y are calculated: In ¢, 3 features are selected while
6 are deselected. For ¢, in contrast, 6 features are selected
while 3 are not. Hence, the value of |c;Nc;| is 2 and |(F\c;)
N (F\cj)| is 1. The distance between both configurations is
then:

distance(c;,c;,F)=1—

6]

242
distance(cy,cy,F) =1— % 2)

=0.556

The distances between all configurations from Table I are listed
in Table II. In our example, configurations ci, cs, and ¢7 have
the maximum distance (0.556) to ¢;. Similar to the previous
step, if more than two products have the same distance, we
select one randomly. For our example, we select c¢; as the
second product to be tested.

Third, we select the next product to be tested that is least
similar to all previously tested products. To calculate distances
between more than two products, we use a strategy called
maximum over distance minimum [4]. With this strategy,
we first determine for all untested products their minimum
distances to the set of already tested products. Then, we select
the product that has the maximum of those minimum distances
to be tested next. Considering again our example, we already
selected two products ¢, and c;. In this step, to ensure we
select the least similar product, we consider the minimum
distances between the selected products and the other products
(cf. Table II highlighted in bold). Then the product with the
maximum distance of these minimum distances is selected. For
our example, this applies to two products ¢3 and cg. Again, one
of them can be selected randomly. The resulting order of all
products is ¢z, ¢y, €3, cg, c4, Cg, C9, Cs, and c7. We repeat the
third step until all products are prioritized. In the next section,
we evaluate the presented approach and discuss the results.

IV. EVALUATION

In this section, we formulate research questions, introduce
our subject systems, and explain the methodology of our case
study. Finally, we present and discuss the results.

A. Research Questions

For a given set of configurations, our approach aims to
detect faults faster. To this end, we assess the effectiveness
of cluster-based prioritization in terms of its fault detection
rate compared to random orders and heuristic similarity-based
prioritization [4]. To evaluate the impact of considering the
intra-cluster prioritization, we compare it to the default order
given by clustering algorithm. In particular, we answer the
following questions:

RQ-1 How does cluster-based prioritization perform compared
to a heuristic similarity-based approach and random
orders?

RQ-2 How does intra-cluster prioritization influence the
effectiveness of testing compared to using the default
order provided by clustering algorithms?

RQ-3 How does the number of clusters influence the effec-
tiveness of testing?

To provide reasonable results, we consider several systems to

answer our research questions.

TABLE 11
DISTANCES BETWEEN THE 9 CONFIGURATIONS LISTED IN TABLE I

cy e c3 c4 Ccs c6 c7 cg c9
c 0 0.556 0.444 0222 0556 0.334 0.556 0444 0.334
¢y 0.556 0 0.334 0.556 0.222 0.222 0.222 0.334 0.222
c3 0444 0.334 0 0.444 0.111 0.556 0.111 0444 0334
cy 0.222 0.556 0.444 0 0.556 0.556 0.556 0.222 0.337
cs 0.556 0.222 0.111 0.556 0 0.444 0.222 0334 0.444
ce 0.334 0.222 0.556 0.556 0.444 0 0.444 0334 0.444
c7 0.556 0.222 0.111 0.556 0.222 0444 0 0.556 0.222
cg 0.444 0.334 0444 0.222 0.334 0.334 0.556 0 0.556
cog 0.334 0.222 0334 0.337 0444 0444 0222 0.556 0

TABLE III
FEATURE MODELS USED FOR THE EVALUATION.

Feature Model #Features #Const. CTCR #Configs.
BattleofTanks 144 0 0% 459
FM_Test 168 46 28% 44
Printers 172 0 0% 181
BankingSoftware 176 4 2% 42
Electronic Shopping 290 21 11% 22
DMIS 366 192 93% 29
eCos 3.0 i386pc 1,245 2,478 99% 62
FreeBSD kernel 8.0.0 1,369 14,295 93% 77
Linux_2_6_28_6 6,888 6,847 99% 479
AFMS5K 5,542 300 11% 685

#Const.: number of constants
CRCR: cross-tree constraints representative
#Configs.: number of configurations for pairwise sampling

B. Subject Systems

We consider a variety of subject systems from academia
as well as real-world systems to evaluate our approach. Due
to the lack of having open-source software product lines that
have test cases and faults in the source code, we conduct our
experiment using the feature models of the subject systems.
The number of features in the subject systems ranges from
144 to 6,888, which allows us to evaluate the effectiveness of
our approach even for large-scale systems, such as the Linux
kernel. We selected these feature models because they have
been used previously to evaluate the scalability of product-line
testing [15, 16]. In Table III, we show the number of features,
number of constraints (Const.), ratio of distinct features in
cross-tree constraints to the number of features (CTCR), and
number of valid configurations using pairwise sampling [3].
We created the configurations with the sampling algorithm
ICPL [16].

C. Methodology

Given the feature models, we now explain our methodology
for conducting the evaluation. In particular, we provide details
about the faults to be detected, the clustering algorithms applied,
and the metric used to assess the effectiveness of our approach.

a) Artifical Faults: Due to a lack of real-world product
lines that have test cases and faults in the source code, we
use simulated faults to evaluate our approach. For this, we
applied a technique that has been used in previous studies on
product-line testing [4, 10, 12, 26]: We randomly selected and
marked features as containing faults. To simulate reality, the

faults are generated based on patterns of existing faults that
were investigated in real-world product lines [1]. The simulated
faults represent not only faults inside a single feature, but also
interaction faults, which occur due to the interaction of features.
In this paper, we assume that if the products contain these
features and their combinations, the faults will be detected.
Based on the reported patterns [1], we simulate faults up to
5-wise feature interactions. In addition, we assume that larger
feature models exhibit potentially more feature interactions.
Hence, the number of simulated faults on each feature model
is n/10, where n is the number of features. That means that in
our experiment the faults increase proportional with the size
of a model.

b) Weka: For our evaluation we use the Waikato En-
vironment for Knowledge Analysis (Weka) [13] version 3.8,
an open source tool for machine learning and data mining. It
provides several clustering algorithms, such as simple K-means,
Hierarchical Cluster, or Em. In this paper, we use the simple
K-means algorithm to cluster products, as it needs no deeper
knowledge about clustering algorithms, thus, not biasing the
results, and also can serve as a baseline for applying other
algorithms in the future. To answer our third research question
(RQ-3), we consider three values for K (i.e., different number
of clusters): K =5, K =10, and K = 15.

c) Average Percentage of Faults Detected (APFD): We
use the APFD metric developed by Elbaum et al. [11] to
evaluate the effectiveness of fault detection. APFD is calculated
by measuring the weighted average of faults detected for the
system under test. The values range from O to 1 with higher
values indicating faster fault detection rates. APFD is calculated
as follows:

APFD — 1itf1+tf2+...+tfm +i
nxm 2n

3)

where n is the number of test cases, which represent products
in our case, and m is the number of faults. Furthermore, 7 f; is
the position of the first test ¢ that exposes the fault. We compute
the APFD for all prioritization approaches. For the random
order, we repeated the experiments 100 times to simulate an
average performance. In Table IV, we report the average APFD
values over 100 different sets of faults for our 10 subjected
systems.

TABLE IV
AVERAGE APFD FOR CLUSTER-BASED PRIORITIZATION, RANDOM ORDERS, AND SIMILARITY-BASED PRIORITIZATION.

FM APFD
Clustering
K=5 K=5(W/OICP) K=10 K=10 (W/OICP) K=15 K=15(W/O ICP) Random Similarity

BattleofTanks 0.700 0.697 0.699 0.699 0.703 0.698 0.689 0.708
FM_Test 0.740 0.718 0.741 0.741 0.740 0.723 0.660 0.738
Printers 0.760 0.751 0.760 0.760 0.760 0.754 0.745 0.749
BankingSoftware 0.585 0.551 0.587 0.587 0.561 0.554 0.536 0.608
Electronic Shopping 0.705 0.702 0.697 0.697 0.686 0.682 0.668 0.702
DMIS 0.716 0.676 0.699 0.673 0.670 0.630 0.639 0.733
eCos 3.0 i386pc 0.739 0.688 0.737 0.737 0.733 0.672 0.658 0.767
FreeBSD kernel 8.0.0 0.673 0.647 0.662 0.662 0.649 0.629 0.549 0.679
Linux_2_6_28_6 0.841 0.829 0.820 0.835 0.835 0.818 0.722 0.850
AFMS5K 0.348 0.342 0.347 0.351 0.348 0.344 0.312 0.354
Average 0.681 0.660 0.677 0.663 0.669 0.650 0.618 0.689

K: number of clusters; W/O ICP: without considering intra-cluster prioritization

D. Results and Discussion

Regarding RQ-1, we compare cluster-based prioritization
with K =5, K =10, and K = 15 (columns highlighted with gray
in Table IV) to the heuristic similarity-based prioritization [4]
and random orders with respect to the fault detection rate.
Regardless the number of clusters, we observe that the average
APFD values of cluster-based prioritization are higher than
these of random orders for all feature models. In particular,
the APFD values for cluster-based prioritization with K =5,
K =10, and K = 15 are 0.681, 0.667, and 0.669, receptively,
while the average APFD value of random order is 0.618. Hence,
the improvements are 10.2%, 9.5%, and 8.3%.

If we look at the results for each feature model separately,
we observe that for each one cluster-based prioritization is, on
average, better than random orders. To support our observation,
we apply the Mann-Whitney U test, a non-parametric statistical
test, to investigate whether the differences to our approach are
significant. From this test, we obtain a value, called p-value,
representing the probability that two samples are equal. The
significance level is 0.05, which means that a p-value less
than or equal to 0.05 indicates significance. We observe that
the difference between cluster-based prioritization and random
orders is significant for all feature models, except printers
and BattleofTanks, with p-values 0.30 and 0.34, respectively.
All raw results of the experiment, including all p-values are
publicly available'.

Furthermore, we observe that the average APFD value of
heuristic similarity-based prioritization (0.689) is slightly higher
than the values for cluster-based prioritization. This applies
especially with K =5 with 0.681 for which the percentage of
decrease is 1.2%.

Regarding RQ-2, we compare our approach to cluster-based
prioritization without considering intra-cluster prioritization
(i.e., taking the default order given by the clustering algorithm).
We found that the average APFD values are higher when
applying intra-cluster prioritization for K =5, K = 10, and
K =15 with 0.681, 0.677, and 0.669, respectively than without

Uhttp://wwwiti.cs.uni-magdeburg.de/iti_db/research/spl-testing/CP/

intra-cluster prioritization, where the values decrease to 0.660,
0.663, and 0.650. Hence, the percentages of improvement of
considering intra-cluster prioritization are 3.18%, 2.1%, and
2.9%. Still, we notice that the improvement of prioritizing
products within clusters is relatively small.

Regarding RQ3, we see that for our cluster-based priori-
tization fewer clusters result in higher APFD values. As we
show in Table IV, the average APFD values for K =5, K = 10,
and K = 15 are 0.681, 0.677, and 0.669 respectively. The
percentages improvement with K =5 compared to K = 10
and K = 15 are 0.5% and 1.8%. The reason for the slight
improvement is the impact of intra-cluster prioritization on the
results. Fewer clusters result in more products within each
cluster and, thus, the higher is the effect of intra-cluster
prioritization. The following supports the aforementioned
reasoning: Without considering intra-cluster prioritization the
results are varying. For instance, we observe that the average
APFD values for K =5, K =10, and K = 15 are 0.660,
0.663, and 0.650 respectively. In particular, the percentages of
improvement of K = 10 compared to K =5 and K = 15 are
0.4%, and 2.0% We conclude that less clusters improve the
results if intra-cluster prioritization is considered.

To summarize our findings, we answer our research questions
as follows:

RQ-1 Cluster-based prioritization on average performs better
than random orders but slightly worse than heuristic
similarity-based prioritization. However, cluster-based
prioritization enables testers to select subsets of all
products (e.g., select the cluster with the most demanded
products), which cannot be done easily with heuristic
prioritization, as it requires to compare all products
instead of clusters.

Considering the default order of clusters is slightly
worse than prioritizing products overall or in a cluster.
Still, clustering provides comparable results and further
investigations seem promising.

A higher number of clusters decreases the APFD value
on average. Hence, increasing the number of clusters

RQ-2

RQ-3

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/spl-testing/CP/

influences badly on the testing effectiveness.

Still, clustering with and without prioritization achieves similar
and occasionally better results compared to the heuristic
approach, for instance for the Printers product line and K = 15,
as we show in Table IV. We plan to further investigate why
clustering performs better in such cases and whether we can
improve its performance based on our findings.

E. Threats to Validity

In the following, we discuss the internal and external threats
to validity that may affect our results.

There is a potential threat to internal validity related to the
random distribution of the seeded faults. To mitigate this threat,
we generated 100 sets of faults for each feature model. In each
set, we selected 10% of each model’s features and marked them
as faulty. We argue that the random distribution of the seeded
faults is better than building on non-representative distribution.
Another internal threat is that we compared our approach to
random orders. To mitigate random effects, we repeated those
experiments 100 times.

A potential external validity threat related to the nature
of feature models is that cluster-based prioritization may
not provide similar results for different feature models. To
alleviate this threat, we considered different feature model
sizes with different complexities, including a version of the
Linux kernel with 6,888 features. Furthermore, the selected
clustering algorithm may influence the results. To alleviate this
threat, we plan to consider other algorithms in future work.

V. RELATED WORK
A. Product Prioritization

Several approaches have been proposed to prioritize products
based on different criteria. Using common feature model
metrics, Sanchez et al. [26] propose five prioritization criteria.
They compare their effectiveness and observe that different
orderings of the same product line may lead to a significant
difference in the rate of early fault detection. Complementary to
their criteria, we propose cluster-based approach to prioritize
products. Henard et al. [15] sample and prioritize products
at the same time. They employ a search-based approach to
generate products based on similarity among them. With our
cluster-based approach, we focus on prioritizing products
to exploit the similarity among them, which is compatible
with any sampling technique. In previous work [4], we
propose a heuristic similarity-based prioritization approach
to prioritize products based on the similarity between them. In
addition, we propose a heuristic approach that considers the
similarity between products during the sampling process [2].
In this paper, we combine cluster-based prioritization to the
aforementioned approach in order to enhance the product-line
testing effectiveness.

Lity et al. [20] adopt graph algorithms to optimize product
orders in order to reduce the incremental product-line analysis
efforts. Combining their approach with cluster-based prioriti-
zation may reduce the effort in regression analysis. Baller et
al. [6] introduce a framework to prioritize products under test

based on the selection of adequate test suites with regard to
cost and profit objectives. The limitation of this approach is that
it requires all products and their relation to test cases and test
goals in advance. To tackle this limitation, Baller et al. in [7]
propose an incremental test suite optimization approach for
product-line testing that uses a symbolic representation in
terms of feature constraints. However, further experiments are
required to evaluate the effectiveness of their approach. In
contrast, we use the similarity among configurations as criteria
to prioritize them with clustering algorithms.

Sénchez et al. [25] prioritize products based on their non-
functional attributes, such as feature size and the number of
changes in a feature. These information are often not provided,
especially in black-box testing. Devroey et al. [9] perform
statistical analysis of a usage model in order to select the
products with high probability to be executed. Both approaches
are complementary to ours and apply different ideas.

B. Test Case Prioritization

In product-line testing, test case prioritization is used to
reschedule test case execution to increase the rate of fault
detection. Lachmann et al. in [19] propose an integration
testing approach based on structural and behavioral deltas
with a dissimilarity approach to prioritize test cases. Since
these approaches mainly focus on test cases prioritization,
combining them with cluster-based prioritization may enhance
the effectiveness of product-line testing.

In single system testing, as surveyed by Yoo et al. in [27],
efforts have been made to prioritize test cases. For instance,
Rothermel et al. [24] describe several techniques for using test
execution information to prioritize test cases in regression
testing. This information includes code coverage and an
estimation on the ability of test cases to detect faults. Hemmati
et al. [14] report that selecting dissimilar test cases outperforms
selecting test cases based on a coverage criterion. In contrast
to these works, we propose cluster-based product prioritization
to prioritize products in a product line, which could also be
considered for test cases.

In the context of product lines, it might be that some of
these approaches can be applied to prioritize either the products
or the test cases. For example, Yoo et al. [28] prioritize test
cases by classifying them into clusters. Then, they prioritize
the clusters by utilizing domain expert judgment. We follow a
similar approach but for products and do not consider domain
expert judgment, which we may utilize in future work.

VI. CONCLUSIONS

The increasing interest in variable software systems in
academia and industry requires adopted types of testing
techniques to improve their quality. Most challenging in
product-line testing is the large number of possible products
that can be generated. While the number of products can already
be reduced using combinatorial interaction testing, testers wish
to find faults as fast as possible due to the limited testing time.

In this paper, we propose cluster-based product prioritization
to cluster products into different subsets such that products in

each group share common features. This allows to sample these
products and, thus, reduce the costs of testing. We evaluate our
approach using different sizes of feature models. The results
show that, on average, our approach performs slightly worse
than current techniques but better than random orders. As a
result, we argue that further investigations are necessary to
improve cluster-based product prioritization.

In future work, we plan to consider additional clustering
algorithms and different similarity measures. Furthermore, we
aim to consider more product lines.

ACKNOWLEDGMENTS

We thank Sebastian Krieter for interesting discussions about
the approach. This research is supported by DFG grants LE
3382/2-1 and SA 465/49-1.

REFERENCES

[1] 1. Abal, C. Brabrand, and A. Wasowski. 42 Variability
Bugs in the Linux Kernel: A Qualitative Analysis. In
ASE, pages 421-432. ACM, 2014.

[2] M. Al-Hajjaji, S. Krieter, T. Thiim, M. Lochau, and
G. Saake. IncLing: Efficient Product-Line Testing Using
Incremental Pairwise Sampling. In GPCE, pages 144-155.
ACM, 2016.

[3] M. Al-Hajjaji, J. Meinicke, S. Krieter, R. Schroter,
T. Thiim, T. Leich, and G. Saake. Tool Demo: Testing
Configurable Systems with FeatureIDE. In GPCE, pages
173-177. ACM, 2016.

[4] M. Al-Hajjaji, T. Thiim, M. Lochau, J. Meinicke, and
G. Saake. Effective Product-Line Testing Using Similarity-
Based Product Prioritization. SoSyM, pages 1-23, 2016.

[5] S. Apel, D. Batory, C. Kistner, and G. Saake. Feature-
Oriented Software Product Lines: Concepts and Imple-
mentation. Springer, 2013.

[6] H. Baller, S. Lity, M. Lochau, and I. Schaefer. Multi-
Objective Test Suite Optimization for Incremental Product
Family Testing. In ICST, pages 303-312. IEEE, 2014.

[7] H. Baller and M. Lochau. Towards Incremental Test Suite
Optimization for Software Product Lines. In FOSD, pages
30-36. ACM, 2014.

[8] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[9] X. Devroey, G. Perrouin, M. Cordy, P.-Y. Schobbens,

A. Legay, and P. Heymans. Towards Statistical Priori-

tization for Software Product Lines Testing. In VaMoS,

pages 10:1-10:7. ACM, 2014.

X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and

P. Heymans. Search-based Similarity-Driven Behavioural

SPL Testing. In VaMoS, pages 89-96. ACM, 2016.

S. Elbaum, A. G. Malishevsky, and G. Rothermel. Priori-

tizing Test Cases for Regression Testing. SEN, 25(5):102—

112, 2000.

F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary

Search-Based Test Generation for Software Product Line

Feature Models. In CAiSE, volume 7328, pages 613-628.

Springer, 2012.

[10]

[11]

[12]

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and 1. H. Witten. The WEKA Data Mining
Software: An Update. ACM SIGKDD Explorations
Newsletter, 11(1):10-18, 2009.

H. Hemmati and L. Briand. An Industrial Investigation of
Similarity Measures for Model-Based Test Case Selection.
In ISSRE, pages 141-150. IEEE, 2010.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Hey-
mans, and Y. L. Le Traon. Bypassing the Combinatorial
Explosion: Using Similarity to Generate and Prioritize
T-Wise Test Configurations for Software Product Lines.
TSE, 40(7):650-670, 2014.

M. F. Johansen, @. Haugen, and F. Fleurey. An Algorithm
for Generating T-Wise Covering Arrays from Large
Feature Models. In SPLC, pages 46-55. ACM, 2012.
K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, 1990.

D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr. Software
Fault Interactions and Implications for Software Testing.
TSE, 30(6):418-421, 2004.

R. Lachmann, S. Lity, F. E. Fiirchtegott, M. Al-Hajjaji,
and I. Schaefer. Fine-Grained Test Case Prioritization for
Integration Testing of Delta-Oriented Software Product
Lines. In FOSD, pages 1-10. ACM, 2016.

S. Lity, M. Al-Hajjaji, T. Thiim, and I. Schaefer. Op-
timizing Product Orders Using Graph Algorithms for
Improving Incremental Product-Line Analysis. In VaMoS,
pages 60-67. ACM, 2017.

S. Oster, F. Markert, and P. Ritter. Automated Incremental
Pairwise Testing of Software Product Lines. In SPLC,
pages 196-210. Springer, 2010.

G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon.
Automated and Scalable T-Wise Test Case Generation
Strategies for Software Product Lines. In ICST, pages
459-468. IEEE, 2010.

K. Pohl, G. Bockle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, 2005.

G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Prioritizing Test Cases for Regression Testing. TSE,
27(10):929-948, 2001.

A. Sanchez, S. Segura, J. Parejo, and A. Ruiz-Cortés.
Variability Testing in the Wild: The Drupal Case Study.
SoSyM, pages 1-22, 2015.

[26] A. B. Sanchez, S. Segura, and A. Ruiz-Cortés. A Com-
parison of Test Case Prioritization Criteria for Software
Product Lines. In ICST, pages 41-50. IEEE, 2014.

S. Yoo and M. Harman. Regression Testing Minimization,
Selection and Prioritization: A Survey. STVR, 22(2):67—
120, 2012.

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering
Test Cases to Achieve Effective and Scalable Prioritisation
Incorporating Expert Knowledge. In ISSTA, pages 201—
212. ACM, 2009.

[25]

[27]

(28]

