
Migrating the Android Apo-Games into an
Annotation-Based Software Product Line
Jonas Åkesson

Chalmers University of Technology
Gothenburg, Sweden

Sebastian Nilsson
Chalmers University of Technology

Gothenburg, Sweden

Jacob Krüger
Otto-von-Guericke University

Magdeburg, Germany

Thorsten Berger
Chalmers | University of Gothenburg

Gothenburg, Sweden

ABSTRACT
Most organizations start to reuse software by cloning complete
systems and adapting them to new customer requirements. How-
ever, with an increasing number of cloned systems, the problems
of this approach become severe, due to synchronization efforts. In
such cases, organizations often decide to extract a software product
line, which promises to reduce development and maintenance costs.
While this scenario is common in practice, the research community
is still missing knowledge about best practices and needs datasets
to evaluate supportive techniques. In this paper, we report our ex-
periences with extracting a preprocessor-based software product
line from five cloned Android games of the Apo-Games challenge.
Besides the process we employed, we also discuss lessons learned
and contribute corresponding artifacts, namely a feature model and
source code. The insights into the processes help researchers and
practitioners to improve their understanding of extractive software-
product-line adoption. Our artifacts can serve as a valuable dataset
for evaluations and can be extended in the future to support re-
searchers as a real-world baseline.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering; Maintaining software.

KEYWORDS
Software product line, Extraction, Case study, Feature model, An-
tenna, Apo-Games

ACM Reference Format:
Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019.
Migrating the Android Apo-Games into an Annotation-Based Software
Product Line. In 23rd International Systems and Software Product Line Con-
ference - Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3336294.3342362

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3342362

1 INTRODUCTION
In practice, organizations often start to develop a family of similar
software systems by copying an existing one and adapting it to
new requirements. This approach is called clone-and-own [6, 21],
operating at the granularity of whole systems—or, in our case, An-
droid apps [4]. While it is a simple and quick approach to software
reuse, it also has severe limitations. All changes, such as bug fixes
and updates, must be propagated to ensure the correct behavior
of all clones, each of which can have individual side effects. Thus,
maintaining a large number of clones becomes an error-prone and
costly activity [6, 18, 24].

When these problems become too severe, organizations often
start to extract [9] a software product line from the cloned legacy
systems [1, 5]. A software product line promises benefits consid-
ering the quality, development effort, and time-to-market, mainly
through the reusable features that are implemented in a common
platform [8, 23]. Instead of having separated code clones for each
system, developers can configure features (i.e., select or deselect
them) to define a variant that is automatically created.

Despite the practical importance of migrating from cloned sys-
tems into a software product line [3, 7, 24], we still lack detailed
insights into best practices, and most automated techniques are of
limited applicability [10, 11, 13, 14, 19, 22]. To address these short-
comings, more and more researchers propose to systematically
collect real-world case studies and datasets, for instance, in the
EPSLA catalog [16]. Besides collecting experiences of researchers
and practitioners, openly accessible data does also provide ground-
truths to evaluate and benchmark automated techniques [13, 22].
In this spirit, Krüger et al. [12] provide a set of 25 games (20 Java,
five Android) that have been implemented by a single developer
using the clone-and-own approach. The authors asked the research
community to work on five challenges to provide artifacts that
can later be used for evaluation purposes. These challenges are
concerned with reverse engineering (i.e., feature models, feature
locations, architecture recovery), code analysis (i.e., code smells),
and extracting an actual software product line.

In this challenge solution, we describe a case study that we con-
ducted to address the last challenge. For this purpose, the first two
authors of this paper extracted a software product line from the
Android versions of the Apo-Games. As variability mechanism for
our platform, we used the Antenna preprocessor. In this paper, we
report our analysis and migration methodology, as well as experi-
ences we gained during this process. More precisely, we make the
following contributions in this paper:

https://doi.org/10.1145/3336294.3342362
https://doi.org/10.1145/3336294.3342362

SPLC ’19, September 9–13, 2019, Paris, France Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger

Table 1: Systems of the Apo-Games that we migrated.

Name Year SLOC Game Type

ApoClock 2012 3,615 Arcade/puzzles
ApoDice 2012 2,523 Level-based puzzles
ApoSnake 2012 2,965 Snake
ApoMono 2013 6,487 Level-based puzzles
MyTreasure 2013 5,360 Level-based puzzles

• We explain how we analyzed and migrated five Android
games into an annotation-based software product line.

• We discuss our experiences on problems and open challenges
that we faced during this process.

• We contribute a repository,1 including the feature model and
source code of our software product line. To this end, we
provide a FeatureIDE [17] project that allows to configure
and instantiate variants.

The results provide insights for researchers and practitioners alike
to understand migration processes from cloned systems to a soft-
ware product line. In addition, our artifacts can be used as baselines
to evaluate and compare automated techniques. To this end, they
can also serve as starting points to extend the artifacts further and
integrate them into suitable datasets.

2 METHODOLOGY
Before the conduct of our case study, the first two authors of this
paper performed a literature survey to familiarize with software-
product-line techniques and tools. We remark that we did not em-
ploy a specific re-engineering process, such as those described
by Assunção et al. [2], but employed commonly mentioned activi-
ties. To migrate the cloned Android games into a software product
line, we also tackled additional challenges, mainly constructing a
feature model. Within this section, we describe our methodology,
which includes reports on our subject systems, the domain analysis,
feature recovery, and the actual transformation.

2.1 Subject Systems
The Apo-Games case [12] includes a set of five different Android
games for which the source code is publicly available. We provide
an overview of these games in Table 1. As we can see, these five
games have been published within two years and comprise between
roughly 2,000 and 6,500 source lines of code. Each of these games
uses a customized version of a third-party game engine.

2.2 Domain Analysis
The first step of our case study was to perform a domain analysis.
We started by installing all games from Google Play and docu-
mented the games’ functionalities and visible entities (e.g., buttons,
player character, game logic). Based on this documentation, we
gained knowledge about the commonalities and variations within
the games, which we can characterize as follows:

• ApoClock provides two different game modes, arcade and
puzzle. In both modes, the player has to hit clocks with a ball
before any of the clocks runs out of time. While the arcade

1https://bitbucket.org/Jacob_Krueger/splc2019_antenna_apo-games_spl

Table 2: Legacy compared to software-product-line games.

#F #A #C # Files SLOC

Legacy — — — 117 20,950
SPL 61 19 14 43 10,278

Reduction -63.25% -50.94%
F: Features; A: Abstract Features; C: Constraints

mode is endless and accumulates a score, the goal in the
puzzle mode is to clear a designed level.

• ApoDice is a puzzle game that shows dices to the player,
each dice having a number indicating how often it can move.
The player has to move each dice to a black square on the
board within the given number of moves. A total of 30 levels
is predefined, but users can add their own ones.

• ApoMono requires the player to move an avatar from a
starting position to a goal. Throughout the avatar’s path,
there are different obstacles, for example, missing tiles or
walls. The player can move some stones on the field to over-
come such obstacles.

• ApoSnake is similar to the original snake game where the
player controls a snake to collect candy, increasing its size.
However, in ApoSnake, the amount of candies in a level is
fixed and they have different colors, which colors the snake
in the same way. The snake can then move through any wall
that has the same color as itself.

• MyTreasure is a puzzle game within a two dimensional
maze. The player has to collect a golden coin in this maze,
for which they has to rotate the maze, allowing the avatar
to move according to gravity. In addition, yellow blocks in
the maze also move according to the rotation.

All of these games also have an editor that allows the user to
create own custom levels for that specific game. Custom levels are
stored together with all levels other users created, and all levels can
be retrieved and played by using a button in the menu. However,
we found that this button crashes some games (except ApoMono
and MyTreasure), because the server on which the games were
stored is not available anymore.

In addition to playing the games, we performed a lightweight
architecture analysis. For this purpose, we reverse engineered the
class diagrams of all games using IntelliJ IDEA Ultimate. We man-
ually inspected the classes that were shown in the models and
compared the code and models. This helped us to identify feature
locations and understand that all games share a common core and
comprise some unique classes, for example, for parts of the game
logic or branding. Moreover, we found that the systems were not
solely cloned, but already designed for reuse, for instance, there are
common classes to define the basic functions of all buttons.

Finally, we built the source code using Android Studio2 to make
sure that the games build and run as expected. We found that
ApoSnake did not start, due to an issue in the external games engine.
Thus, while we migrated its features, we were not able to start it,
neither as legacy nor as software-product-line game.

2https://developer.android.com/studio/index.html

https://bitbucket.org/Jacob_Krueger/splc2019_antenna_apo-games_spl
https://developer.android.com/studio/index.html

Migrating the Android Apo-Game SPLC ’19, September 9–13, 2019, Paris, France

2.3 Feature Recovery
Our domain analysis helped us to obtain a general understanding
of the games and their features. To improve this understanding, we
analyzed the source code of the games based on clone detection and
pairwise comparison, an idea proposed by other researchers [7, 14].
CloneDetection. For code clone detection, we used the CPD tool.3
We then analyzed the identified clones on file level, using the pair-
wise comparison of Meld.4 To allow Meld to work properly, we
first had to address the naming conventions of the Apo-Games [14],
removing the game-specific prefixes. We considered identical code
to be part of common features, while we considered variations for
variable child features. Such a pair-wise comparison does not scale
for many systems, but is feasible for comparing five games [7, 14].
Feature Modeling. We used FeatureIDE [17] to model the identi-
fied commonalities and variability in a feature model. To derive the
dependencies between features, we relied on our domain knowl-
edge and the presence or absence of features in the legacy games
(e.g., there are game-specific features that have to be in alternative
groups). In Figure 1, we display the final feature model that we
constructed after the previous steps.

2.4 Transformation
We used the preprocessor Antenna from FeatureIDE to mark op-
tional features in the software product linewith #ifdef annotations.
Considering the actual code transformation, we incrementally inte-
grated the most similar games (in terms of identified code clones)
into a common platform. To this end, we relied on the pairwise
diffing of Melt that helped us to compare classes and to identify the
exact differences between games. Initially, we focused on integrat-
ing two games (i.e., ApoDice and ApoSnake) and getting them to
build and run, allowing us to test our setup and the source code. So,
we first integrated only the common base and the main differences
of these two games in few features. Afterwards, we annotated addi-
tional features to increase the variability of the software product
line. We remark that we could still not get ApoSnake to run. After
we ensured that we could build and run ApoDice as a variant of
the software product line, we continued with integrating the other
legacy games, in the following order: ApoClock, ApoMono, and
MyTreasure. Unfortunately, we repeatedly had problems with build-
ing and running the configured games in Android Studio, which
we could not fully resolve.

During our the transformation, we constantly performed quality
assurance to maintain the quality of the resulting software product
line. For this purpose, we configured the games in FeaturesIDE to
then build and execute them in Android Studio. Besides testing for
flaws in the code that may results in a bug or errors, we also com-
pared the variants to the legacy games. With this comparison, we
aimed to identify any unintended differences, for example, because
we used Antenna incorrectly or lost functionalities.

3 RESULTS
In this section, we describe the artifacts we created. We summarize
the characteristics of the feature model and source code of the
software product line compared to the legacy games in Table 2.
3https://pmd.github.io/pmd/pmd_userdocs_cpd
4http://meldmerge.org/

Theme

ApoGames

Menu

Editor

Userlevels

LevelChooser

Component

World

Canvas

Controls

Press

Drag

MoveButtons

Moves

Counter
Score

Sound

Language

MonoColor

Nickname

Options

SnakeLogic

GameLogic

DiceLogic

ClockLogic

MonoLogic

TreasureLogic

ApoFont

TreasureFont

MonoFont

Font

MonoMenu

TreasureMenu

ApoMenu

LevelGrid

NextLevel

Dynamic 8

Static 2

Grey

TreasureCanvas

MonoCanvas

Effects

Music

German

English

2

2

White

Green

Mandatory

Legend:

Optional

Or

Alternative

Abstract

Concrete

Hidden

Collpased

Figure 1: Excerpt of the feature model of the extracted soft-
ware product line. Hidden features are not yet configurable.

Feature Model. In total, we identified 61 features, of which 42 are
concrete features, and we implemented 27 of them in the software
product line. Our implementation is a reduce set of all features,
due to time constraints and unexpected efforts (cf.Section 4). We
defined a group of child feature below each feature that required
game-specific adaptations. As we can see in Figure 1, we defined few
mandatory features (i.e., GameLogic, Menu, Theme, LevelGrid, Font),
which are needed to set up the rough architecture of a game. In
particular, the featureGameLogic is the most basic one that contains
the more advanced game algorithms. Other features are optional
and provide additional functionalities that were available in some
games, such as an Editor and Options.

https://pmd.github.io/pmd/pmd_userdocs_cpd
http://meldmerge.org/

SPLC ’19, September 9–13, 2019, Paris, France Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger

We defined 14 cross-tree constraints in the model. These ensure
that a user can only configure a game that will work, even though
not all configurations will result in a reasonable game. Thus, these
constraints ensure that the right game elements (like a branding),
have to be selected together. For example, TreasureGameLogic is
implied if the corresponding TreasureMenu is selected. We included
hidden features that we did not annotate with Antenna, yet.
Source Code. Considering the implementation, we migrated all
selected Apo-Games into a common platform, but did not annotate
all optional features. However, we achieved a considerable reduc-
tion in code size of approximately 51%. We remark that this number
results from large restructurings and merges during the transforma-
tion that reduced the redundant code clones, but is not completely
correct, due to tooling differences and the fact that Antenna uses
comments for its annotations. Moreover, we could reduce the num-
ber of files from a total of 117 to 43. Considering that the largest
legacy game had 28 classes on its own, these statistics show that
there is an increase in the architectural complexity for the software
product line, which we expected as it integrates multiple games.
Nonetheless, the reduced size highlights the potential for reuse
even for smaller cloned systems, such as Android games.

4 LESSONS LEARNED
During the analysis and transformation of the Android games,
we experienced some challenges that we discuss in the following.
Some points are strongly connected to Android and technical is-
sues during software evolution, both of which may appear in any
organization or open-source project at some point.
Dissimilarity due to Libraries.When we analyzed the architec-
tures of the games, we expected that the games would be quite
similar, due to the similar structure. However, despite ApoDice and
ApoClock sharing almost all classes and the same look-and-feel,
the actual implementations differ quite a lot. We found that these
differences are due to the game engine that was used in two differ-
ent versions, resulting in changes in, for example, the rendering
technique. In our experience, such external libraries cannot only
conflict expectations, but were also hampering variability.
Unexpected Effort of Branding. All of the games share some
common elements, such as menus. We expected that these would
comprise a lot of cloned code and only small variations to change
the look-and-feel of individual games. However, we experienced
that these views were fundamentally different in their source code.
Thus, we re-designed common features and implemented them
from scratch, only introducing branding as child features. This way,
we reduced the redundancy that may have been in the software
product line, but it required unexpectedly high effort and we had
to stop at some point to focus on integrating features.
Deciding about Features.We experienced that it was challenging
to decide whether we should try to extract a common feature or not.
As aforementioned, merging can be an effortful task, because some
features differ heavily in the legacy games, for instance, due to the
different game types and evolution (e.g., the external game engine).
After the migration, we are still not sure if extracting a software
product line from the Android games was worth the effort. In our
opinion, the systems need to be much closer to each other (i.e., not
outliers [15]) and this may be a common problem with games.

Readability of Source Code. A common argument against anno-
tations for variability is that they obfuscate the source code, which
can become lengthy and hard to read [1, 20]. We experienced ex-
actly this issue while transforming the variants, as we had to merge
various implementations of the same method into one. This prob-
lem can be tackled with additional refactoring, but it still hampers
the integration of variants and is a source for errors.
Available Tooling. We used FeatureIDE for most parts of our
case study and found it most useful, too. In the initial phase, we
identified other tools that could support the analysis of the legacy
games. However, few of such research tools were available in a
usable state or provided more help compared to other open-source
solutions that we used.We found several specialized tools that could
have been helpful with additional artifacts besides the source code.
Overall, we found no established tool for software product lines
that sufficiently supports the extraction process that we applied.

5 THREATS TO VALIDITY
Internal Validity. Unfortunately, we could not cooperate with
the original developer of the Apo-Games for this case study. Thus,
we had to analyze the legacy games and scope features ourselves.
While we were careful and checked the results constantly, other
researchers or practitioners would arguably still derive slightly
different results. However, we could run and execute the legacy
games form our software product line and our experiences as well
as artifacts are nonetheless valuable baselines for future work.
External Validity.We had only access to five rather small Android
games to migrate them. So, our process and the results may not be
fully comparable to real-world scenarios. Still, considering that only
few subject systems for the extraction of software product lines
are available, the Apo-Games are a valuable dataset. Moreover, our
case study already revealed important insights into problems that
will only increase for larger systems, wherefore our experiences
and artifacts are helpful for future research and practitioners.

6 CONCLUSION
In this paper, we described a case study in which we extracted a
software product line from five Android games of the Apo-Games
dataset. From this case study, we contributed the resulting arti-
facts (i.e., feature model, implemented software product line) and
reported our experiences. Our main insight is that merging clones
is a challenging process, even if we rely on annotation-based ap-
proaches that are often argued to only require simple additions of
variability into the code [1]. However, locating, scoping, and merg-
ing of features remained challenging tasks that require considerable
efforts. These problems are more conceptual and independent of
the used variability mechanism.

In future work, we want to extend and refine our artifacts to
enable researchers to use them as suitable ground truths for evalu-
ations. Moreover, we plan to conduct further case studies to verify
our insights. Especially, we aim to understand what factors (e.g., the
variability mechanism) have what impact on processes and efforts.
Acknowledgments. This work is supported by the ITEA project
REVaMP2 funded byVinnova Sweden (2016-02804), and the Swedish
Research Council Vetenskapsrådet (257822902). We thank Jennifer
Horkoff for valuable comments on this work.

Migrating the Android Apo-Game SPLC ’19, September 9–13, 2019, Paris, France

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer.
[2] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.

Vergilio, and Alexander Egyed. 2017. Reengineering Legacy Applications into
Software Product Lines: A Systematic Mapping. Empirical Software Engineering
22, 6 (2017), 2972–3016.

[3] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In InternationalWorkshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 7:1–7:8.

[4] John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem. In
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
625–634.

[5] Paul C. Clements and Linda M. Northrop. 2001. Software Product Lines: Practices
and Patterns. Addison-Wesley.

[6] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 25–34.

[7] Slawomir Duszynski, Jens Knodel, and Martin Becker. 2011. Analyzing the Source
Code of Multiple Software Variants for Reuse Potential. InWorking Conference
on Reverse Engineering (WCRE). IEEE, 303–307.

[8] Peter Knauber, Jesus Bermejo, Günter Böckle, Julio C. S. do Prado Leite, Frank J.
van der Linden, Linda M. Northrop, Michael Stark, and David M. Weiss. 2002.
Quantifying Product Line Benefits. In International Workshop on Software Product-
Family Engineering (PFE). Springer, 155–163.

[9] Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering (PFE). Springer,
282–293.

[10] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Software Engineering
for Variability Intensive Systems. CRC Press, Chapter Features and How to Find
Them: A Survey of Manual Feature Location, 153–172.

[11] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference (SPLC). ACM, 354–
361.

[12] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake,
and Thomas Leich. 2018. Apo-Games - A Case Study for Reverse Engineering

Variability from Cloned Java Variants. In International Systems and Software
Product Line Conference (SPLC). ACM, 251–256.

[13] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239–253.

[14] Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich. 2017.
Finding Lost Features in Cloned Systems. In International Systems and Software
Product Line Conference (SPLC). ACM, 65–72.

[15] Crescencio Lima, Wesley K. G. Assunção, Jabier Martinez, William Mendonça,
Ivan C Machado, and Christina F. G. Chavez. 2019. Product Line Architecture
Recovery with Outlier Filtering in Software Families: The Apo-Games Case Study.
Journal of the Brazilian Computer Society 25, 1 (2019), 7.

[16] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In International Systems and
Software Product Line Conference (SPLC). ACM, 38–41.

[17] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[18] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with Variantsync. In International Systems
and Software Product Line Conference (SPLC). ACM, 329–332.

[19] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering. Springer, 29–58.

[20] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel. 2012. Comparing
Program Comprehension of Physically and Virtually Separated Concerns. In
International Workshop on Feature-Oriented Software Development. ACM, 17–24.

[21] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 151–160.

[22] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-
bauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Benchmark-
ing the Techniques for the Evolution of Variant-Rich Systems. In International
Systems and Software Product Line Conference (SPLC). ACM. Accepted.

[23] Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer.

[24] Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. 2006. Assessing
Merge Potential of Existing Engine Control Systems into a Product Line. In
International Workshop on Software Engineering for Automotive Systems (SEAS).
ACM, 61–67.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Subject Systems
	2.2 Domain Analysis
	2.3 Feature Recovery
	2.4 Transformation

	3 Results
	4 Lessons Learned
	5 Threats to Validity
	6 Conclusion
	References

